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marca_agua_uned.eps
logo_escuela_doctorado.eps




TESIS DOCTORAL

2016

BDD ALGORITHMS TO PERFORM

HARD ANALYSIS OPERATIONS ON

VARIABILITY MODELS
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Abstract

To compete in the global marketplace, manufacturers try to differentiate their

products by focusing on individual customer needs. Fulfilling this goal requires

companies to shift from mass production to mass customization. In the context

of software development, software product line engineering has emerged as a

cost-effective approach to developing families of similar products by supporting

high levels of mass customization.

Variability models are often used to specify the common and variable features

of the products in one such family. Moreover, they model the inter-feature con-

straints which must be satisfied to guarantee the validity of the derived products.

Despite the benefits of variability models, constructing and maintaining them

can be a laborious task, especially in product lines with a large number of fea-

tures and constraints. As a consequence, the study of automated techniques to

reason on variability models has become an important research topic for the

product line community.

The aim of most automated techniques can be grouped in two classes: (i) ensu-

ring the correctness of variability models, and (ii) providing guidance to derive

products from a variability model. The former is usually put in the practise

by means of analysis operations, which can be performed by black box reusing

logic engines, such as SAT-solvers and binary decision diagram libraries. Un-

fortunately, such kind of reuse implies long computation times, and for some

operations that need calling the logic engine an excessive amount of times, the

approach does not scale. To overcome this problem, this thesis proposes new al-

gorithms that directly deal with the binary decision decision diagram data struc-

ture encoding a variability model. In particular, our algorithms are specifically

designed to detect those features that need to be included in all legal products,

those ones that do not belong to any legal product, the number of products that

include a particular feature, as well as the set of features that a particular feature

needs to include or exclude to be part in any legal product.

The second problem this thesis faces is related to product derivation. In com-

plex variability models, deriving a valid product is not trivial task at all, since



a lot of constraints between the features must be taken into account. To speed

up product derivation, this thesis proposes a new approach that tries to minimise

the number of configuration steps required on average to derive a whole product.

Our approach, based on the information theory concept of entropy, takes advan-

tage of the fact that, due to the inter-feature constraints, some decisions may be

automatically derived from other decisions previously made.



Resumen

Como consecuencia de la globalización de los mercados, los fabricantes necesi-

tan adaptar sus productos a las necesidades especı́ficas de cada cliente. Alcanzar

este objetivo requiere de las mismas un cambio en sus modelos de producción,

pasando de la producción en masa a la producción personalizada de productos.

En el contexto del desarrollo de software, la ingenierı́a de lı́neas de productos

software ha emergido como un enfoque efectivo en costes que se centra en el

desarrollo de familias de productos similares, soportando al mismo tiempo un

alto grado de personalización.

Los modelos de variabilidad son utilizados para especificar las caracterı́sticas

comunes y variables a la familia de productos. Además, permiten modelar las

restricciones entre caracterı́sticas que todo producto debe satisfacer para ser

considerado válido. A pesar de los beneficios de los modelos de variabilidad,

construir y mantener dichos modelos puede ser una tarea compleja y laboriosa,

especialmente para aquellos con un gran número de caracterı́sticas y restriccio-

nes. Como resultado, el estudio de técnicas de razonamiento automático sobre

modelos de variabilidad ha pasado a ser uno de los temas de investigación más

importantes para la comunidad de las lı́neas de productos.

Las técnicas automáticas de análisis puede ser clasificadas en dos grupos aten-

diendo al objetivo para el que han sido diseñadas: aquellas que se encargan de

garantizar la corrección del modelo y aquellas que se encargan de dar soporte a

la configuración de los distintos productos. Las primeras son generalmente lleva-

das a la práctica por medio de operaciones de análisis, las cuales son realizadas

por medio de funciones predefinidas en motores lógicos, tales como SAT-solvers

o librerı́as de diagramas de decisión binarios. El principal problema de esta es-

trategia consiste en que tal tipo de reutilización implica el consumo de grandes

cantidades de tiempo. Este hecho unido al hecho de que algunas de estas ope-

raciones requieren de múltiples llamadas a dichas funciones deriva en que esta

estrategia presente graves problemas de escalabilidad. Con el fin de dar respuesta

a este problema, en esta tesis proponemos nuevos algoritmos que directamente

interactúan con la estructura de datos interna del diagrama de decisión binario



utilizado para codificar el modelo de variabilidad. En concreto, nuestros algorit-

mos están especı́ficamente diseñados para detectar aquellas caracteristicas que

son incluidas en todos lo productos válidos, aquellas otras que no pertenecen a

ningún producto válido, el número de produtos que incluyen una determinada

caracteristicas, ası́ como los conjuntos de caracteristicas que una caracteristica

particular necesita incluir o excluir para ser incluida en algún producto válido.

El segundo problema que abordamos en esta tesis tiene que ver con la configu-

ración de productos. La configuración de productos en modelos de variabilidad

no es una tarea trivial ya que requiere de una gran cantidad de decisiones acerca

de qué caracterı́sticas deben ser incluidas y cuales no, teniendo en cuenta que

estas se encuentra interrelacionadas. Con el fin de acelerar este proceso, en esta

tesis proponemos un nueva estrategia que trata de minimizar el numero de deci-

siones a tomar en promedio para configurar un producto. Esta estrategia, basada

en el concepto de entropı́a de la teorı́a de la información, aprovecha el hecho de

que ciertas decisiones pueden ser automáticamente derivadas de las decisiones

tomadas previamente.
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CHAPTER

1
Introduction

To increase variety, improve customer satisfaction, reduce lead-times, and shorten costs,

many companies have shifted from mass production to mass customization [SSJ05]. This

shift of paradigm enriches the mass production economies of scale with custom manufactu-

ring flexibility by developing families of related products instead of single products. From

this perspective, designing a product family is the process of capturing and modeling mul-

tiple product variants to satisfy different market niches. Figure 1.1 depicts an example of

how mass customization is being applied in the textile industry. In this kind of applications,

customers may choose those options that best fit their needs.

Figure 1.1: Web application to customize Adidas shoes

1
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1. INTRODUCTION

Software Product Lines (SPLs) are a particular case of mass customization focused on

the production of software. A SPL looks for the efficient development of whole portfolios

of software products [CN01]. The basis of the approach is that products, instead of being

developed from scratch one by one, are built from a core asset base (CAB), i.e., a collection

of artifacts that have been designed specifically for use across the portfolio.

The SPL approach brings the benefits of economies of scale to software engineering,

since less time and effort are needed to produce a greater variety of products. Many compa-

nies have exploited the concept of SPLs to increase the resources that focus on highly dif-

ferentiating functionality and thus improve their competitiveness with higher quality and re-

usable products while decreasing the time-to-market condition. For instance, van der Linden

et al. [vdLSR07] summarize experience reports from ten different companies working on

diverse domains (e.g., Bosch on Gasoline Systems, Nokia on Mobile Phones, Philips on

Consumer Electronics Software for Televisions, Siemens on Medical Solutions, etc.).

Under this approach, variability models are essential to represent the common and vari-

able features that products may include. Here, products are specified as a unique combination

of these features, where a feature is defined in the literature as “any prominent and distinctive

aspect or characteristic that is visible to various stakeholders” [KCH+90].

As Berger et al. note [BSL+13], the practical significance of variability modeling is re-

flected in the rise of industrial tools for SPLs, such as pure::variants by Pure Systems GmbH

and Gears by Big Lever Software Inc., in the current development of the Common Variability

Language (CVL) standard by the Object Management Group (OMG), and, above all, by the

fact that important open-source projects, as the Linux Kernel and the eCos operating system,

are indeed managing huge variability models with thousands of selectable features.

On the other hand, not all feature combinations are valid. There may be feature incom-

patibilities (e.g., “it is not possible to choose more than one target architecture in the eCos

operating system”), feature dependencies (e.g. “the TCP/IP stack could specify that it needs

per-thread data support”), etc. Hence, there is a need to provide an automated support to deal

with such entangled large-scale variability models.

Existing analyses of variability models fall into two main classes: correctness checking

and derivation support [MWC09]. The usual way to carry out correctness checking is by

means of analysis operations. According to the systematic literature review carried out by

Benavides et al. [BSRC10], more than 30 operations have been reported, such as detecting

core features (i.e., features that need to be included in all legal products) and dead features

2



(i.e., features that do not belong to any legal product). To do so, most approaches pro-

ceed as follows: first, models are translated into propositional logic formulas, then they are

processed using off-the-self logic engines, such as SAT-solvers, Binary Decision Diagrams

(BDDs) or CSP solvers, among others. In general, current approaches for variability model

reasoning adopt a “black-box” strategy, that is, without seeing, knowing nor modifying the

internals of the underlying logic engine. In practice, these approaches are efficient enough

for some important operations [LGRC15, PLP11], because they only require calling once

the logic engine. For instance, checking if a given combination of features is valid (i.e., the

combination does not violate any of the feature dependencies), or detecting void models (i.e.,

models that, due to feature dependencies, do not represent any valid product), among others.

However, it is important to note that other interesting operations require repeatedly calling

the logic engine, and therefore, their response time can increase dramatically. In addition,

it is well known that determining the satisfiability of a boolean formula is a NP-complete

problem (i.e., the algorithm might not be feasible), whereas good BDD variable orderings

produce compact BDDs and bad orderings may generate huge BDDs that eventually will

become intractable.

Automatic analyses are also used to support derivation of products, i.e., the process of

selecting or not features to obtain a product according to the model. In most cases, deriving

a product involves one or more end users, also called decision makers, that translate their

requirements into decisions on how the variability should be handled. However, it is im-

portant to note that this is not always a straightforward task because of two main reasons.

First, the number of features that a model may contain can be very large, so the number of

decisions that a user has to make can be huge. Second, the dependencies between features

constrain the selection process. To overcome those difficulties, some tools, commonly called

configurators, are used [PH04]. Some examples of commercial configurators are Configit1,

SAP Product Configurator2, Oracle Configurator3, etc. Given the high number of decisions

needed to configure a complex product, a novel problem not supported by commercial tools

is guiding the decision maker to minimize the number of configuration steps required. This

is one of the problems this thesis faces.

1http://configit.com/
2https://scn.sap.com/docs/DOC-25224
3http://www.oracle.com/us/products/applications/046986.pdf
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1. INTRODUCTION

1.1 Objectives

For the most part, this thesis contributes to the SPL research field. In particular, it focuses

on two of the most important topics in the area: the automated analysis of varibility models

and guidance support for product derivation. Therefore, the general objective of this thesis

is twofold. On the one hand, it provides new algorithms to perform hard analysis operations

(i.e, those ones that require repeatedly calling a logic engine). On the other hand, it provides a

new heuristic to speed up the product derivation process by reducing the number of decisions

that users have to make.

In particular, the following specific objectives are addressed in this thesis:

• Designing an approach to speed up the product derivation process on variability mod-

els.

• Implementing algorithms to efficiently compute core/dead features on variability mod-

els.

• Implementing algorithms to efficiently compute the impact/exclusion set of each fea-

ture.

• Implementing algorithms to efficiently compute feature commonality.

• Redefining core/dead and impact/exclusion measures, applying the concepts of feature

commonality and feature conditional commonality. Such redefinitions unveil critical

information that current measures cannot detect.

• Implementing algorithms to support our measure redefinition.

• Identifying the main research topics, the evolution of the interest in those topics and

the relationships among topics for the SPL research area.

These objectives are elaborated on each part of the thesis as described in the following

section.
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1.2 PhD thesis outline

1.2 PhD thesis outline

This work can be divided in three well-differentiated parts. The first one analyzes the liter-

ature on SPLs using bibliometric techniques. The second one is focused on reviewing and

providing solutions for the automated analysis research topic. The final part of this thesis

focuses on the product derivation task, where we provide a new heuristic for user guidance.

Further details of each chapter are given below.

Chapter 2

This chapter provides the background information necessary for reading this thesis, includ-

ing the subjects of variability models, automated analysis, product derivation and BDDs.

Chapter 3

This chapter presents the state-of-the-art on the SPL literature by means of a bibliometric

analysis. As a result of this analysis, the most researched topics and how the interest in these

topics has evolved over the time are provided. In addition, the state-of-the-art of two of the

most researched topics, which will be covered in this thesis, are reviewed in detail: the auto-

mated analysis of variability models and product derivation.

Chapter 4

This chapter introduces our approaches to compute hard operations identified in Section 3.2.

Furthermore, an algorithm for each operation is proposed. The chapter ends up comparing

the theoretical complexity of our approaches with existing ones.

Chapter 5

This Chapter introduces our heuristic to minimize the number of decisions that users have

to make in order to derive a product from a variability model. In addition, an algorithm to

support our approach and its corresponding implementation are presented. Finally, our ap-

proach is theoretically compared with alternative methods proposed in the related work.
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Chapter 6

This chapter reports the results of empirical experiments to evaluate approaches proposed

in this thesis. First, the models that our benchmark includes are presented. Then, the result

of the experiments are discussed in order to test the validity of our approaches to compute

hard operations. Finally, we report the results of empirical experiments of our heuristic for

user guidance.

Chapter 7

This chapter wraps up the thesis, highlighting its main contributions and proposing future

lines of work.

1.3 Main contributions

This section briefly summarizes the contributions of the thesis, distinguishing between soft-

ware developed and published papers.

1.3.1 Software implementations

The particular results of this Ph. D. thesis include the development of algorithms to support

analysis operations and product derivation guidance. The most important deliverables are:

• A c++ implementation for the BuDDy library of our algorithm for the efficient iden-

tification of core and dead features in variability models is provided. In addition this

implementation and the benchmark used to validate it are freely available at http://

hperez30.github.io/CoreAndDeadFeatures/

• A c++ implementation for the BuDDy library of our algorithm for the efficient compu-

tation of the commonalities of the variables of a boolean formula encoded as a BDD.

• A c++ implementation for the BuDDy library of our algorithm for the efficient compu-

tation of the impact and exclusion sets of the variables of a boolean formula encoded

as a BDD.
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1.3 Main contributions

1.3.2 Publications

The research undertaken in this thesis has been published in 4 journal papers and 2 confer-

ence papers:

• Efficient Identification of Core and Dead Features in Variability Models. Hector

Perez-Morago, Ruben Heradio, David Fernandez-Amoros, Roberto Bean, Carlos Cer-

rada. IEEE Access. 2015, Volume 3, Pages 2333-2340.

doi:10.1109/ACCESS.2015.2498764. JCR Q2.

• A Bibliometric Analysis of 20 Years of Research on Software Product Lines. Ruben

Heradio, Hector Perez-Morago, David Fernandez-Amoros, Francisco Javier Cabre-

rizo, Enrique Herrera-Viedma. Information and Software Technology. 2016, Volume

72, Pages 1 - 15.doi:10.1016/j.infsof.2015.11.004. JCR Q1.

• Augmenting Measure Sensitivity to Detect Essential, Dispensable and Highly Incom-

patible Features in Mass Customization. Ruben Heradio, Hector Perez-Morago,

Mauricio Alférez, David Fernandez-Amoros, Germán H Alférez. European Journal

of Operational Research. Volume 248, Issue 3, 1 February 2016, Pages 1066–1077.

doi:10.1016/j.ejor.2015.08.005. JCR Q1.

• Speeding up Derivative Configuration from Product Platforms. Ruben Heradio, David

Fernandez-Amoros, Hector Perez-Morago, Antonio-Adan. Entropy. June 2014,

Volume 16(6), Pages 3329-3356. doi:10.3390/e16063329. JCR Q2.

• Binary Decision Diagram Algorithms to Perform Hard Analysis Operations on Vari-

ability Models. Ruben Heradio, Hector Perez-Morago, David Fernandez-Amoros,

Roberto Bean, F. Javier Cabrerizo, Carlos Cerrada, and Enrique Herrera-Viedma. In-

telligent Software Methodologies, Tools and Techniques: 15th International Confer-

ence, SoMet 2016, Larnaca (Cyprus), September 12-14, 2016. CORE B.

• A Science Mapping Analysis of The Literature on Software Product Lines. Ruben

Heradio, Hector Perez-Morago, David Fernandez-Amoros, Francisco Javier Cabre-

rizo, Enrique Herrera-Viedma. Intelligent Software Methodologies, Tools and Tech-

niques: 14th International Conference, SoMet 2015, Naples (Italy), September 15-17,

2015. doi:10.1007/978-3-319-22689-7 1. CORE B.
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1.3.3 Research visits

Throughout the development of these doctoral studies we carried out some research activities

in collaboration with the Johannes Kepler University (Linz, Austria). A research visit to the

Institute for Software Systems Engineering (ISSE) for the period from 1 June to 31 August

2016, which was supported by Estancias Breves 2016 funded by Universidad Nacional de

Educación a Distancia (UNED).

1.3.4 Research projects

This work was supported by a pre-doctoral scholarship funded by Universidad Nacional de

Educación a Distancia (UNED), the Comunidad de Madrid under the RoboCity2030 excel-

lence research network under grant 52013/MIT-2748, and the Spanish Ministry of Economy

and Competitiveness through the CICYT. Project DPI-2013-44776-R.
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CHAPTER

2
Background

In this chapter, the background information necessary for reading this thesis is provided.

Section 2.1 introduces variability models. Section 2.2 shows how they can be translated into

equivalent propositional formulas. Section 2.3 introduces SAT Solvers and shows how they

can be used to reason on variability models. Section 2.4 reviews reduced ordered BDDs, a

well-known data structure, and shows how they can be used to reason on variability mod-

els and to undertake product derivation. Finally, the data structure for BDDs used by the

algorithms described throughout this thesis is presented in Section 2.5.

2.1 A Brief Introduction to Variability Models

A variability model, also known as feature model, decision diagram, configuration model,

etc, is often used to specify the features supported by a product line and their inter-relations

[PBL05]. There are in the literature several notations for variability models. However, as we

will see, our work deals with the logic representation of variability models. For that reason,

providing detailed survey on the different variability model languages is out of the scope of

this thesis. We refer the reader to [SHTB07] for a detailed review and comparison between

them.
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2. BACKGROUND

We present now the running example which will be used throughout this thesis. Figure

2.1 represents a variability model written as a directed graph where the nodes represent fea-

tures and the edges represent constraints related to dependencies or incompatibilities between

features. A dashed-line edge depicts that the two connected features are incompatible, while

a solid-line edge from a feature to another represents that the first feature requires the second

one1.

f1 f2 f3

f4 f5 f6

Figure 2.1: A variability model example

A product in a SPL can be specified by a selection of features. Hence, the product P1 =

{ f1,¬ f2,¬ f3,¬ f4,¬ f5,¬ f6} describes a unique product for the variability model depicted in

Figure 2.1. P1 is valid since it does not violate any of the relations in the model. However,

Pe = { f1,¬ f2, f3, f4, f5,¬ f6} is discarded because it violates the constraint f4 cd f5. From

all possible combinations of 6 features, i.e., 26, the set of valid products is reduced to the six

ones summarized in Table 2.1.

Valid Products

1 f1, ¬ f2, ¬ f3, ¬ f4, ¬ f5, ¬ f6

2 f1, ¬ f2, f3, ¬ f4, ¬ f5, ¬ f6

3 f1, ¬ f2, f3, f4, ¬ f5, ¬ f6

4 f1, ¬ f2, f3, ¬ f4, f5, ¬ f6

5 f1, ¬ f2, f3, ¬ f4, ¬ f5, f6

6 f1, ¬ f2, f3, ¬ f4, f5, f6

Table 2.1: Valid products for Figure 2.1

From here on, products will be expressed enumerating only those features which are

included in them. For instance, { f1, f3} and { f1, f3, f4} expresses products P2 and P3 in Table

2.1, respectively.

1Note that, this is a simple example and more complex relation between features may occur.
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2.2 Reasoning on Variability Models

2.2 Reasoning on Variability Models

As mentioned in the previous section, a number of different notations on variability mod-

els are available. For instance, Feature Diagrams (FD) [KCH+90], the Configit language1,

the SAP Product Configurator language 2, etc. Interestingly, most of those notations are se-

mantically equivalent [SHTB07]. In fact, instead of processing models directly, automated

tools for variability management usually translate them into a propositional logic represen-

tation, such as a logic formula in conjunctive normal form (CNF), a BDD, etc. That logic

representation is then processed using off-the-self tools, such as SAT solvers, BDD engines,

etc. [HFAPMA14].

To sum up, the general approach proceeds as follows [BSRC10]:

1. Each feature of the variability model maps to a variable of the propositional formula.

2. Each relationship of the model is mapped into one or more formulas depending on the

type of relationship. Note that, in this step, some auxiliary variables can appear.

3. The resulting formula is the conjunction of all the resulting formulas of step 2.

As an example, Equation 2.1 shows the Boolean encoding of Figure 2.1. The first row

means that at least one of the six features has to be selected. The second and third rows

encode constraints between those features. The second row encodes five dependencies, for

example ¬ f2 ∨ f3 means that f2 requires f3. The third row encodes three incompatibilities,

for example ¬ f1 ∨ ¬ f2 means that f1 is incompatible with f2. We refer the reader to [Bat05]

for a more detailed explanation of the model-to-logic conversion.

ψ ≡ ( f1 ∨ f2 ∨ f3 ∨ f4 ∨ f5 ∨ f6) ∧

(¬ f2 ∨ f3) ∧ (¬ f3 ∨ f1) ∧ (¬ f4 ∨ f3) ∧ (¬ f5 ∨ f3) ∧ (¬ f6 ∨ f3) ∧

(¬ f1 ∨ ¬ f2) ∧ (¬ f4 ∨ ¬ f5) ∧ (¬ f4 ∨ ¬ f6) (2.1)

1
http://configit.com/

2
https://scn.sap.com/docs/DOC-25224

11

http://configit.com/
https://scn.sap.com/docs/DOC-25224


2. BACKGROUND

2.3 Boolean Satisfiability Problems

Once a variability model is translated into a propositional logic representation, a SAT solver

or a BDD engine can be used to reason about it. In this section, we focus on SAT Solvers,

showing how they can be used to reason about variability models. Later, BDD engines are

reviewed in detail in Section 2.4.

SAT solvers support determining the satisfiability of a boolean formula in conjunctive

normal form (CNF). A boolean formula is in CNF if it represents a conjunction of clauses

(i.e., the constraints in a variability model) in which a clause is a disjunction of literals and

a literal is a variable (i.e., the features in a variability model) or its negation. For instance,

Equation 2.1 is in CNF.

SAT solvers only return one of the two following results: satisfiable or unsatisfiable. A

CNF formula is satisfiable iff there is an assignment for all its variables such that the CNF

formula evaluates to true. Otherwise, it is unsatisfiable.

Although, SAT-solvers only return satisfiable/unsatisfiable, the reasoning they support

can be quite complex. For instance, by analyzing the CNF formula or changing assumptions

one can find out if variables always have to be either true or false to make the formula

satisfiable, e.g. given the formula in Equation 2.1, a SAT solver can be use to deduce that f1

always needs to be true to make this CNF satisfiable.

Unfortunately, SAT solvers have two main issues. On the one hand, the SAT problem

is known to be NP-complete [Coo71]. On the other hand, it is important to take into ac-

count that the logic representation of the model may not be in CNF. Therefore, this formula

has to be transformed into an equivalent formula in CNF. However, the equation size of the

translated formula may grow exponentially. To overcome this problem there are in the litera-

ture some methods [Tse83, dlT92]. But, such methods usually introduce additional variables

which increase the gap between SAT solver’s solution and its interpretation in the application

domain [IST13].

2.4 Reduced Ordered Binary Decision Diagrams

BDDs have been widely used as a way of representing and manipulating boolean functions

in many practical applications during the last decades. For instance, they have been used in

logic synthesis, verification, configuration, constraint satisfaction and optimization [Men09].
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2.4 Reduced Ordered Binary Decision Diagrams

BDDs are a way of representing boolean functions. They are rooted, directed, acyclic

graphs, which consist of several decision nodes and terminal nodes [Bry86]. There are two

types of terminal nodes called 0-terminal and 1-terminal. Each decision node v is labeled

by a boolean variable f and has two child nodes called low and high (which are usually

depicted by dashed and solid lines, respectively). The edge from node v to a low (or high)

child represents an assignment of f to 01 (resp. 1).

A BDD is said to be ordered and reduced if it has the following two properties: on the

one hand, it is ordered if different variables appear in the same order on all paths from the

root. On the other hand, it is reduced if the following rules are applied to its graph [HR04]:

R1 Removal of duplicate terminals. If a BDD contains more than one terminal 0-node, then

all edges which point to such a 0-node are redirected to just one of them. The same rule is

applied to terminal nodes labelled with 1.

R2 Removal of redundant tests. If both outgoing edges of a node vi point to the same node

v j, then vi is eliminated, sending all its incoming edges to v j.

R3 Removal of duplicate non-terminals. If two distinct nodes vi and v j in the BDD are the

roots of structurally identical subBDDs, then one of them is eliminated, say v j, and all its

incoming edges are redirected to the other one.

In popular usage, the term BDD almost always refers to Reduced Ordered Binary De-

cision Diagram [HR04]. From here on, we will follow that convention as well. According to

[Bry86] BDDs are a canonical representation for a particular boolean function and variable

order. This property makes the test for equivalence checking inexpensive.

A path from the root to 1-terminal node represents a valid assignment of values to vari-

ables. For example, the path v8 → v7 d v6 d v4 d v3 d v2 d 1 in Figure 2.2 represents a

valid product P1 in Table 2.1.

Figure 2.2 is the BDD representation of Equation 2.1 using the variable ordering f1 ≺

f2 ≺ f3 ≺ f4 ≺ f5 ≺ f6. Note that a logic formula may be encoded with different BDDs

according to the variable ordering used to synthesize the BDD.

It is well-known that the size of a BDD depends on the variable ordering used to build

them [Bry86]. For instance, Figure 2.3 is the BDD representation of Equation 2.1 using the

1throughout this dissertation false/true and 0/1 are used interchangeably
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2. BACKGROUND

Figure 2.2: BDD for Eq. 2.1 according to the var ordering f1 ≺ f2 ≺ f3 ≺ f4 ≺ f5 ≺ f6.

14
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2.4 Reduced Ordered Binary Decision Diagrams

variable ordering f4 ≺ f5 ≺ f6 ≺ f3 ≺ f2 ≺ f1. Note that this BDD is semantically equivalent

to the one in Figure 2.2. However, it is has more nodes, and so it is a less memory-efficient

encoding than the BDD in Figure 2.2.

Figure 2.3: BDD for Eq. 2.1 according to the var ordering f4 ≺ f5 ≺ f6 ≺ f3 ≺ f2 ≺ f1.

Unfortunately, it is also well-known that finding an optimal ordering is an NP-complete

problem [BW96]. Providing a heuristic to find a good variable ordering is out of the scope

of this thesis. Nevertheless, some heuristics specifically designed to deal with variability

models are available [Men09, MT98, NW07].
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2.5 Data structures

Following the directions given by Bryant [Bry86], a data structure to represent BDDs which

will be used throughout this dissertation is going to be defined. In particular, the following

data structures represent a BDD that has m nodes and encodes a boolean formula with n

variables.

• The variable ordering used to synthesize the BDD is represented by an array declared as

follows:

var_ordering: array[0..n-1] of string

• Each node is represented by a record declared as follows:

type node = record

index: 0..n

low, high: node

mark: boolean

end

Where:

1. index is the index of the variables in the ordering. The terminal nodes of the BDD (i.e.,

0 and 1) have index n.

2. low and high are the low and high node successors.

3. mark is used to mark which nodes have been visited during a traversal of the graph.

As we will see, all our algorithms are called at the top level with the root node as

argument and with the mark fields of the nodes being either all true or all false. They

then systematically visit every node in the graph by recursively visiting the subgraphs

rooted by the two children low and high. As they visit a node, they complement the

value of the mark field, so that they can later determine whether a child has already

been visited by comparing the two marks.

• The BDD is represented by an array declared as follows:

bdd: array[0..m] of node
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The terminal nodes of the BDD, 0 and 1, are stored at positions 0 and 1 of the bdd array,

respectively.

For instance, Tables 2.2 and 2.3 represent the content of bdd and var ordering for the

BDD in Figure 2.2, respectively.

position index low high mark

0 6 nil nil false

1 6 nil nil false

2 5 1 0 false

3 4 2 0 false

4 3 3 0 false

5 3 1 3 false

6 2 4 5 false

7 1 6 0 false

8 0 0 7 false

Table 2.2: Content of the bdd array for Figure 2.2

position content

0 “ f1”

1 “ f2”

2 “ f3”

3 “ f4”

4 “ f5”

5 “ f6”

Table 2.3: Content of the var ordering array for Figure 2.2

2.6 Summary

In this chapter, a common way to represent SPLs, called variability models, have been in-

troduced. Moreover, the most common approaches to reason on SPLs have been reviewed.
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As we have seen, this process is usually carried out using logic engines. Therefore, the most

popular logic engines for reasoning on variability models: SAT solvers and BDDs, have been

presented. Finally, this chapter has concluded by providing the data structure to store BDDs,

which will be used in the rest of this thesis.
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CHAPTER

3
Related Work

This chapter is divided into two well-differentiated parts. The first one summarizes the

state-of-the-art on SPL literature. To do so, a bibliometric analysis has been carried out

by using a science mapping bibliometric technique in Section 3.1. The main goal of this

analysis is to identify which are the most important topics in the SPL research field and

their evolution over time. From this analysis, we conclude that the automated analysis of

variability models and product derivation are two of the most researched topics in the area

for the period 2010-2014. Therefore, in the second part of this chapter, we focus on these

important topics. In particular, both of them are reviewed in detail in Sections 3.2 and 3.3,

respectively. The chapter is concluded by reviewing the most common approaches to these

topics.

3.1 Science Mapping Analysis

The goal of this section is to analyze, using a science mapping analysis, the literature on

SPL for the last twenty years. From this analysis, the main topics and trends of this research

area are provided. In particular, we provide information regarding the following issues: the

most impacting papers for a given topic along a certain period of time, the main topics in the

area and their evolution over time. To achieve the above goals, 2845 bibliographic records
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retrieved from ISI Web of Science (ISI-WoS) and Scopus have been processed by means of

a technique called co-word analysis.

3.1.1 Methodology

This section describes in detail the process used to carry out the science mapping analysis.

In particular, we have followed the workflow proposed in [BCB03, CLHHVH11b], which is

composed of the following steps:

1) Data retrieval. The data processed in this section come from ISIWoS and Scopus, which

are the most reliable bibliographic databases at the moment [GJGJMO14, VG09]. On

September 2015, the following query1 was made on Scopus and the ISIWoS Core

Collection for the time span 1995-2014:

TOPIC =

"software product line*" or (

(

"product line*" or "mass customization" or "product famil*" or

"program famil*" or "software factor*" or "product platform*"

) and (

"domain engineering" or "application engineering" or

"feature model*" or "feature diagram*" or "decision model*" or

"decision diagram*" or (software and variabilit*)

)

)

The Venn diagram in Figure 3.1 depicts the number of publication records provided

by each database.

193 1, 4581,194

ISIWoS= 1, 387 Scopus= 2, 652

Figure 3.1: Number of records retrieved from ISIWoS and Scopus

1the asterisk pattern character means zero to many characters; it is used in our query to catch the noun

plurals
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2) Data aggregation. The scatter plot in Figure 3.2 shows the number of citations of the

records common to ISIWoS and Scopus, including the corresponding regression line

as well. ISIWoS has a more selective procedure to include bibliographic references

than Scopus. Therefore, Scopus provides more records than ISIWoS, and the citation

counts tend to be higher as well.

The Pearson’s correlation coefficient of the citation counts is 0.87. So, the information

provided by both databases is rather consistent.

To combine the records, the citation count for the common records was computed as

the maximum of the citations given by ISIWoS and Scopus.

Figure 3.2: Number of citations for publications common to ISIWoS and Scopus

3) Preprocessing. Data retrieved from bibliographic databases usually have errors. For in-

stance, references may be duplicated, authors’ names may appear in different ways,

etc. So, it is necessary to preprocess the data before carrying out any analysis.

To track the evolution of the SPL research area, we have used an approach that requires

analyzing publication keywords: Co-Word Analysis. Hence, we have performed a

laborious preprocessing procedure to:

1. Correct invalid citations; e.g., the technical report [BC05] appears cited in the

raw data gathered from ISIWoS as “Bachman F., 2005, CMUSEI2005 TR012”

and “Bachmann F., 2005, CMUSEI2005TR012”.

2. Standardize keywords. From the ISIWoS records, a set of 2,000 keywords was

available: 1,667 were authors’ keywords and 333 were words provided by ISI-

WoS KeyWords Plus (index terms created by Thomson Reuters from significant,
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frequently occurring words in the title field of a cited article references). The

Scopus records included a set of 9,308 keywords. As Figure 3.3 summarizes, the

initial aggregated set of 11,308 keywords was progressively reduced by applying

the following steps:

(a) Keywords were converted to uppercase, leading and trailing white-spaces

were removed, and inner white-spaces were replaced by the character ‘-’.

After that, the repeated keywords were removed and plurals were grouped.

(b) Keywords useless to identify research topics inside the SPL area were dis-

carded. For example, SOFTWARE-PRODUCT-LINE, PRODUCT-FAMILY,

SOFTWARE-ENGINEERING, etc. are applicable to all the records and thus

they cannot be used to distinguish particular topics.

(c) Keywords were grouped according to their meaning. To improve the inter-

pretability of the co-word analysis results, the set of keywords was reduced

by grouping those words that refer to the same topic. For instance, STAGED-

CONFIGURATION, AUTOMATED-CONFIGURATION, etc. were grouped

as PRODUCT-DERIVATION.

ISIWoS

Authors’

keywords

1,667

ISIWoS

Keyword

plus

333

Total

keywords

11,308

Convert

to uppercase,

remove

white-spaces,

and group

plurals

Discard

useless

words

Group

words

according to

their semantics

Total

keywords

595

Scopus

Authors’

keywords

9,308

Figure 3.3: Summary of the keyword standardization

4) Analysis. Finally, bibliographic data have been examined using science mapping method-

ology. The next section provides an overview of the results of this analysis. For a

detailed description of the work performed we refer to the reader to [HPMFA+16].
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To preprocess and analyze the bibliographic data, the open source software tool SciMAT

[CLHHVH12] which is freely available at: http://sci2s.ugr.es/scimat/, has

been used.

3.1.2 Science Mapping and Longitudinal Study for Software Product

Lines

Science mapping has been used to get three kind of maps: strategic diagrams, thematic

networks, and maps of conceptual evolution.

First of all, to analyze the structure and dynamics of the SPL research area, the bib-

liographic data were divided into four consecutive periods of time: 1995-1999, 2000-2004,

2005-2009, and 2010-2014. To detect the main topics of each period, the algorithm of simple

centers [CCL91] was run using the parameters summarized in Table 3.1. Out of a total of

2,845 documents, 23 were published in Period 1, 208 in Period 2, 902 in Period 3, and 1,712

in Period 4. Note that periods 1 and 2 have rather less documents than periods 3 and 4. As

recommended by [CMK98, CLHHVH11a], parameters minoccurrences and minco·occurrences were

reduced for those periods to accommodate the lesser volume of data.

Parameter Period 1 Period 2 Period 3 Period 4

(1995-1999) (2000-2004) (2005-2009) (2010-2014)

minoccurrences 2 3 4 4

minco·occurrences 2 3 3 3

minkeywords 2 2 2 2

maxkeywords 5 5 5 5

Table 3.1: Parameters for simple centers algorithm

3.1.2.1 Strategic diagrams

Strategic diagrams offer a global representation of the simple center algorithm outcomes. In

this kind of map, the detected topics in each period are arranged according to their centrality

and density. Topics are depicted as nodes whose volume is proportional to the number of as-

sociated publications. The role that a topic plays in a research area is characterized according

to the quadrant where it is placed in the map [CCL91, TR91]:
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Top-right quadrant includes topics both well developed and important for the research

field. Due to their high centrality and density, those topics are usually known as motor

topics.

Bottom-right quadrant contains important but weakly structured topics. They could be

transversal topics or underdeveloped topics of considerable significance for the entire

research field [CLHHVH11a].

Bottom-left quadrant has both weakly developed and marginal topics, representing emerg-

ing or disappearing topics.

Top-left quadrant includes topics that have well developed internal links but unimportant

external ties. Since those topics are internally well structured, they indicate that a

constituted social group is active in them. Nevertheless, they should be considered

peripheral to the work being performed in the global research field [He99].

From here on we refer to the above quadrants as follows: top-right as q1, bottom-right as

q2, bottom-left as q3 and top-left as q4.

Figure 3.4 displays the detected topics on SPL literature for all the periods.

3.1.2.2 Thematic networks

A particular science mapping approach, known as co-word analysis, has been used to identify

the main topics of a scientific field and their interrelationship. It measures the associ-

ation strengths of terms representative of the publications in the field by analyzing the co-

ocurrence frequency of pairs of keywords.

We use again the simple centers clustering algorithm jointly with the equivalence index to

identify research topics by looking for groups of strongly linked keywords [CLR86, CCL91,

KUU10]. In such a way, each detected topic is modeled by a cluster of interrelated keywords

known as a thematic network.

3.1.2.3 Thematic network for Period 1

Period 1 includes just one topic: Software Architecture (SW-ARCH). Figure 3.5 shows the

structure of its associated cluster as a graph. Keywords are represented as nodes whose

volume is proportional to their associated number of publications. The equivalence index
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(a) 1995-1999 (b) 2000-2004

(c) 2005-2009 (d) 2009-2014

Figure 3.4: Strategic diagrams for periods 1, 2, 3, and 4
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of two keywords A and B is depicted by the thickness of the edge that links A to B. Table

3.2 summarizes the performance of the period, i.e., the number of publications on topic

SW-ARCH, the number of citations they received in total and on average, the H-index for

SW-ARCH, and those publications that should be considered as classics for SW-ARCH.

According to Figure 3.5 and Table 3.2, the SPL field comes from a confluence of research

on SW-ARCH, Domain Engineering (DOMAIN-ENG), Requirements Engineering

(REQUIREMENTS-ENG), and Object Orientation (OBJECT-ORIENTATION). From 1995

to 1999 there was a reduced number of published papers with a high number of citations on

average, shaping a topic with high density and centrality that acted as motor for the research

carried out in the subsequent periods.

Figure 3.5: Thematic network for Period 1 (1995-1999)

Topic #Publications #Citations Average H-index H-core

Citations

SW-ARCH 13 157 12.08 7 [CHW98, SB99, Lam98, DKO+97, RS98]

[KKLL99, LHM+98]

Table 3.2: Topic Performance for Period 1 (1995-1999)

3.1.2.4 Thematic network for Period 2

Period 2 encompasses three topics: Software Reuse (SW-REUSE), SW-ARCH, and Feature

Modeling (FEATURE-MOD). Figure 3.6 shows the structure of their associated clusters.

Table 3.3 sums up the performance of the period.

According to Figure 3.4.b, SW-REUSE and FEATURE-MOD replaced SW-ARCH as

motor topic. In particular, SW-ARCH fell into q3, becoming a declining topic.

From 2000 to 2004, most published papers where about SW-REUSE, a topic which

bound together research on DOMAIN-ENG, REQUIREMENTS-ENG, SPL Evolution, SW-

REUSE, and Software Components.
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Topic #Publications #Citations Average H-index H-core

Citations

SW-REUSE 68 678 9.98 12 [Sch02, Nor02, LK04, ADH+00, vGBS01, PKS04]

[Lut00, TNK04, ZJY03, GS03, BBMY04, GA01]

FEATURE-MOD 52 562 10.81 12 [CHU04, LKL02, BPSP04, LK04, PKS04, GA01]

[Mat04, SPR04, Gri00, HSVM00, DSB04, CPRS04]

SW-ARCH 47 433 9.21 9 [SB02, BCM+04, Sch02, BHJ+03, Kru02]

[GS03, BBMY04, SPR04, FV03]

Table 3.3: Topic Performance for Period 2 (2000-2004)

(a) SW-REUSE (b) SW-ARCH (c) FEATURE-MOD

Figure 3.6: Thematic networks for Period 2 (2000-2004)

In addition, FEATURE-MOD emerged as a motor topic that grouped research on Soft-

ware Design, Feature Modeling, Object Orientation, and Product Derivation on SPLs.

Notice that the relation between papers and topics is N : M, that is, a paper may talk about

many topics, and a topic may be covered by more than one paper. For instance, reference

[PKS04] is a core paper of both SW-REUSE and FEATURE-MOD (see Table 3.3).

3.1.2.5 Thematic network for Period 3

Period 3 has three main topics: DOMAIN-ENG, SW-ARCH, and FEATURE-MOD. Figure

3.7 shows the structure of their associated clusters. Table 3.4 summarizes the performance

of the period.

From 2005 to 2009, FEAUTURE-MOD became the most important topic in SPL re-

search, not only in terms of quantity (being the topic about which more papers were pub-

lished), but also in terms of quality (being the topic with the most citations).
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(a) DOMAIN-ENG (b) SW-ARCH (c) FEATURE-MOD

Figure 3.7: Thematic networks for Period 3 (2005-2009)

Topic #Publications #Citations Average H-index H-core

Citations

DOMAIN-ENG 198 1,865 9.42 12 [MYC05, vO05, AMS07, LDL07, RBS09]

[RW07, KPSY07, AC08, KG09, BLP05]

[WHG+09, PL05]

FEATURE-MOD 282 2,923 10.36 23 [CHE05a, CHE05b, Bat05, SHTB07, BTRC05]

[SHT06, CW07, TBKC07, ATLS08, SvGB05]

[CP06, MPH+07, TBK09, VG07, KAB07]

[BBRC06, HKW08, MMLP09, AGM+06, MBC09]

[LDL07, CZZM05, TBD+08]

SW-ARCH 162 1,180 7.28 11 [KAK08, HHPS08, FCS+08, ATLS08, SvGB05]

[VG07, KAB07, FUB06, vO05, TBD07, LHBC05]

Table 3.4: Topic Performance for Period 3 (2005-2009)
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3.1.2.6 Thematic network for Period 4

Period 4 displays an explosion of topics. It has twice as many topics as Periods 2 and 3:

Automated Analysis of Variability Models (AUT-ANLYS), SW-DESIGN, VARIABILITY-

MANAGEMENT, SW-QUALITY, SW-REUSE, and PRODUCT-DERIVATION. Figure 3.8

shows the structure of their associated clusters. Table 3.5 summarizes the performance of the

period.

(a) AUT-ANLYS (b) SW-DESIGN

(c) VARIABILITY-MANAGEMENT (d) SW-QUALITY

(e) SW-REUSE (f) PRODUCT-DERIVATION

Figure 3.8: Thematic networks for Period 4 (2010-2014)

According to Figure 3.4.c, from 2010 to 2014, three topics have played a motor role:

AUT-ANLYS, VARIABILITY-MANAGEMENT, and SW-QUALITY. As Figure 3.8.a shows,

FEATURE-MOD is the keyword with most associated publications (not only for its cluster,
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Topic #Publications #Citations Average H-index H-core

Citations

AUT-ANLYS 264 1,451 5.50 13 [BSRC10, CHS+10, SLB+11, AKGL10, CHSL11]

[DGR11, BSL+10, CBH11, SHBRC11, DDH+13]

[MC10, ACLF09, ACLF13]

SW-DESIGN 213 796 3.74 11 [SBDT10, BBS10, AKGL10, CB11, LBL11]

[KGM10, DGRN10, SRC+12, NTS+11, TDR+11]

[URG10]

VARIABILITY 182 583 3.20 9 [SBDT10, LAL+10, CB11, DGRN10, TDR+11]

MANAGEMENT [RB10, LMN10, ZSS+10, GWT+14]

SW-QUALITY 146 310 2.12 5 [BG11, MFMP10, RFBRC+12, MAaI12, MGH+11]

PRODUCT 175 524 2.99 9 [DGR11, MC10, RGD10, WBS+10, LK10]

DERIVATION [GWW+11, DYS11, BBG+10, SIMA13]

SW-REUSE 186 693 3.72 10 [ER11, dMSNdCMM+11, SHBRC11, ANAc10]

[OMR10, HBG11, PSK+10, KBK11, POS+12]

[UKB10]

Table 3.5: Topic Performance for Period 4 (2010-2014)

but for all the clusters of Period 4). The high equivalence index between FEATURE-MOD

and AUT-ANALYS reflects the works on formal methods and algorithms to support the auto-

mated analysis of feature diagrams. According to Figure 3.8.c, VARIABILITY-

MANAGEMENT binds together research on Software Components, Domain Specific Lan-

guages (DSL), Model Driven Development (MDD), and Service-Oriented Architecture (SOA).

Finally, as Figure 3.8.d shows, SW-QUALITY groups research on SW-ARCH, Software Se-

curity, and Empirical Studies where the SPL paradigm is validated.

According to Figures 3.6.c and 3.7.c, the derivation of particular products from a SPL

platform has been strongly associated to research on feature modeling from 2000 to 2009.

Nevertheless, Figure 3.8.f and the position of PRODUCT-DERIVATION in the strategic dia-

gram in Figure 3.4.c show that this subject is gaining independence and, in the current period,

it binds together research on Ontologies, Domain Engineering, Optimization problems and

Knowledge-Based Engineering.

In Figure 3.4.d, SW-DESIGN is halfway between q3 and q2. Jointly with Figure 3.8.b, it

could be interpreted as that, from 2010 to 2014, a considerable effort has been made to apply

general research on Software Development (Software Design, Aspect Orientation, Multi-

Agent Systems, Software Composition) to SPLs.

Finally, it is important to highlight that the most performing topic in the last years has

been the automated analysis of feature models, according to Table 3.5.
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3.1.2.7 Longitudinal Analysis of Topic Evolution

The analysis of co-citation clusters over consecutive periods of time can be used to track the

emergence and growth of research areas, and predict their near term change [Sma06]. In par-

ticular, the movement of topics throughout the quadrants of strategic diagrams in successive

periods provides information regarding their evolution. For instance, when a topic passes

from q3 to q1, it means that an emerging topic has been developed and become central for

the field.

The inclusion index between two sets S and S ′ of words is computed as the number of

common words to both sets divided by the number of words of the smallest set.

Figure 3.9 describes topic evolution. In this figure, topics are represented by nodes (ver-

tically aligned by periods) whose volume is proportional to the number of publications they

have associated. The inclusion index of two topics T and T ′ is represented by the thickness

of the edge that links T to T ′. Whenever the keyword that gives name to T ′ is also a keyword

in cluster T , the edge is represented by a solid line. Otherwise, the edge is depicted as a

dashed line.

Figure 3.9: Topic evolution between periods

According to Figure 3.9, the evolution of the SPL area has behaved properly, grow-

ing smoothly and continuously. The number of publications has increased in each period.
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Moreover, no topic has abruptly disappeared; on the contrary, original topics have progres-

sively been consolidated and, especially in the last five years, they have been branched out

to more specific research themes.

Feature modeling has been the most important topic in the whole SPL research area.

It presents the best evolution behavior and the best quality indicators (see the H-index of

FEATURE-MOD, AUT-ANLYS, SW-QUALITY, and PRODUCT-DERIVATION in Tables

3.3, 3.4, and 3.5). Research on software architectures and software reuse has also been

essential for the development of the area. In particular, the following conclusions may be

drawn from Figures 3.4 and 3.9:

1. According to the movement of SW-ARCH through the quadrants of the strategic dia-

grams in Figure 3.4, SW-ARCH was the initial motor topic, which inspired research on

SPLs. Nevertheless, it moved from q1 in Period 1, to q3 in Periods 2 and 3, becoming

a peripheral topic.

2. From Period 2, feature modeling has behaved as an essential motor topic for the de-

velopment of the SPL field. As the size of the nodes in Figure 3.9 shows, the number

of publications on this topic has grown dramatically. In the last five years research on

feature modeling has spread out to several subareas: AUT-ANLYS, PRODUCT-

DERIVATION, and SW-QUALITY (two of them playing a motor role).

3. A main goal for the SPL paradigm is shifting from opportunistic to systematic reuse of

software. Accordingly, SW-REUSE and DOMAIN-ENG have worked as motor topics

from 2000 to 2009. However, nowadays SW-REUSE may be considered a peripheral

topic.

To sum up, according to the above explanation the Automated Analysis of Variability

Models and Product Derivation have been two of the most researched topics in the area for

the period 2010-2014. Therefore, in the remainder of this dissertation, we focus on these

important topics.
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3.2 Automated Analysis of Variability Models

As product lines grow and evolve, variability models become bigger and harder to under-

stand. So, there is a need for an automated mechanism that provides information regarding

which role each feature plays according to the variability model. This automated process

is carried out by means of analysis operations. Several analysis operations have been re-

ported in the literature [BSRC10, Boe11], which are put into practice by using the process

mentioned in Section 2.2. This process, as already mentioned, is composed of the following

two steps. First, models are translated into equivalent propositional logic formulas. Then,

the logic representation is processed using off-the-self logic engines, such as SAT-solvers

and BDDs. In general, the engines are black-box reused, that is, without seeing, knowing

nor modifying the engine internals. In practice, this approach is efficient enough for some

important operations [LGRC15, PLP11], such as checking if a given combination of features

is valid (i.e., the combination does not violate any of the feature dependencies), or detect-

ing void models (i.e., models that, due to feature dependencies, do not represent any valid

product). However, we show that black-box reuse is inadequate for other interesting opera-

tions because it imposes calling many times the logic engine. For those operations, it is more

efficient to glass-box reuse the BDD libraries. In particular, in this dissertation we focus on

the following hard operations:

1. Computation of feature commonality. Let P and P f denote the sets all of valid products

and products that include a particular feature f , respectively. Then, the commonality of

a feature f is
#P f

#P
. As discussed in [FAHCC14], feature commonality provides descrip-

tive statistics to account for the standardization/parameterization balance of variability

models, and it is useful to improve the accuracy of product line economic models to

estimate the Return On Investment (ROI).

2. Detection of core and dead features, i.e., those features that appear in all or none of

the valid products [BSRC10]. Note that those features are absolutely essential or dis-

pensable in a product line, respectively. It can be seen as a particular case of the above

measure, where a feature is core or dead if its commonality is 1 or 0, respectively.

3. Computing the feature impact and exclusion sets. The impact set of a feature f is

composed of all the features f ′ that require f to be enabled whenever they are included
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in a valid product, i.e.,

Impact Set( f ) = { f ′ · f ′ ⇒ f }

The exclusion set of a feature f is composed of all the features f ′ that are required to

be disabled whenever f is included in a valid product, i.e.,

Exclusion Set( f ) = { f ′ · f ⇒ ¬ f ′}

Impact/exclusion sets are useful to quantify how necessary/incompatible are the fea-

tures in a model [Boe11].

For the sake of clarity, we repeat again the small example introduced in Section 2.1.

f1 f2 f3

f4 f5 f6

Figure 3.10: A variability model example (rep. Figure 2.1)

Valid Products

1 f1, ¬ f2, ¬ f3, ¬ f4, ¬ f5, ¬ f6

2 f1, ¬ f2, f3, ¬ f4, ¬ f5, ¬ f6

3 f1, ¬ f2, f3, f4, ¬ f5, ¬ f6

4 f1, ¬ f2, f3, ¬ f4, f5, ¬ f6

5 f1, ¬ f2, f3, ¬ f4, ¬ f5, f6

6 f1, ¬ f2, f3, ¬ f4, f5, f6

Table 3.6: Valid products for Figure 3.10 (rep. Table 2.1)

In the following subsections, we review the above operations and show how they are

usually computed. The reminder of this section is structured as follows: first, the most

common approaches to compute feature commonalities are reviewed in Subsection 3.2.1.

Then, the most common approaches to identify absolutely essential and dispensable features

are reviewed in Subsection 3.2.2. Finally, this section concluded by reviewing the most

common approaches to compute highly required and incompatible features in Subsection

3.2.3.
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3.2.1 Measures to Compute Feature Commonality

As mentioned before, the commonality of a feature f is
#P f

#P
, where P and P f denote the

sets all of valid products and products that include a particular feature f , respectively. As

an example, according to Table 3.6, f3 is included in five of the six valid products, so the

commonality of f3 is 5
6
. Table 3.7 summarizes feature commonalities for Figure 3.10. In the

literature, the commonality of a feature is also referred to as its probability. In this thesis,

both terms are used as synonyms.

Feature f1 f2 f3 f4 f5 f6

Pr( f ) 1 0 5
6

1
6

1
3

1
3

Table 3.7: Feature commonalities for Figure 3.10

Two main approaches are found in the literature to compute the commonality of a feature:

the former is based on #SAT whereas the latter is performed by using the sat count function

provided by BDD libraries.

1. The first approach consists of repeatedly calling to #SAT model counter. A #SAT

model counter is a program that computes the number of satisfying assignments of a

boolean formula. Some examples of these kinds of tools are cachet1, relsat2, sharpSAT3,

among others. Let ψ the logic representation of the model, Kübler et al. [KZK10] pro-

pose computing #P and #P f by calling a #SAT counter with ψ and f ∧ ψ as input

parameters, respectively.

In [FAHCC14], it has been experimentally shown that calling repeatedly a #SAT solver

only scales for small variability models. Note that while the SAT problem is known to

be NP-complete [Coo71], it is widely believed that the #SAT problem is even harder

[BHvM+09]. To overcome such problem [FAHCC14] propose an alternative approach

to compute commonality, which takes advantage of the tree structure of feature models

(a popular notation for variability modelling). Unfortunately, this approach only works

for feature models.

1http://www.cs.rochester.edu/u/kautz/Cachet/index.htm
2http://www.bayardo.org/resources.html
3https://sites.google.com/site/marcthurley/sharpsat
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2. The second approach consists of repeatedly calling the sat count function in a BDD

library. This function returns the number of satisfying assignments of a boolean for-

mula. Let ψ the logic representation of the model. The commonality of a feature f

can be computed by calling a sat count function with ψ and f ∧ψ as input parameters,

respectively.

Algorithm 1 shows how the above approaches proceed.

Algorithm 1: get feature commonalities (Commonality brute force approach)

1 Input boolean formula ψ; set F of all features

2 Output a list including all commonality features

3 var feature commonalities: list; count f, count: int;

4 begin

5 feature commonalities = {}

6 count = sat count(ψ)

// or by using a #SAT solve(ψ)

7 forall f ∈ F do

8 count f = sat count(ψ ∧ f )

// or by using a #SAT solve(ψ ∧ f )

9 feature commonalities.insert(count f /count)

10 return feature commonalities

3.2.1.1 Computational cost

Commonality features

#SAT solver sat count apch.

NP − complete O(m.n)

Table 3.8: Computational complexity for Algorithm 1.

Let m the number of nodes of the BDD and n the number of variables (features) of

the boolean formula, Algorithm 1 requires calling the sat count function n + 1 times. In

addition, as sat count has complexity O(m), this approach has a complexity O(m.n). Table

3.8 summarizes the computational cost for computing commonality features in a variability

model.
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3.2.2 Measures to Identify Absolutely Essential and Dispensable Fea-

tures

Features in a product line usually have varying degrees of importance. Some features may

be highly demanded by the market and so most products should include them. Other features

may become dispensable as the market demand evolves. In particular, features that appear in

all or none of the valid products are absolutely essential or dispensable, respectively [vDK02,

PHRCT06, ZMZ06, BSTRC07, ZYZJ08, TBD+08, MWC09, TC09].

According to Table 3.6, f1 is included in all products and so it is a core feature. As f2

is missing in every products, it is a dead feature. The following three main approaches are

found in the literature to identify them:

• The first one consists of repeatedly calling a SAT-solver to enumerate all valid products,

and then inspecting the products to identify what features appear in all and none of

them, respectively. Unfortunately, the number of products represented by a variabil-

ity model grows exponentially with the number of features. For instance, a model

with 260 independent optional features (i.e., features without dependencies with the

remaining ones) represents more combinations than the number of atoms in the ob-

servable universe [FKC12]. So, this method, which is used for instance by the FAMA

tool [TBRC+08], has serious scalability limitations1.

• The second one proceeds as follows: let ψ a boolean formula encoding a variability

model, a feature f is core iff ψ → f is a tautology or, in other words, iff ¬ f ∧ ψ is

unsatisfiable [HR04]. Similarly, f is dead iff f ∧ ψ is unsatisfiable. Thus, all core

and dead features can be detected by repeatedly calling a SAT-solver (or a BDD en-

gine), which is the method proposed in [ZK10, Tar13]. This approach is described by

Algorithm 2. As Lesta et al. [LSW15] note, this approach can be improved for the

case of dead features by reducing the number of checks as follows: whenever f ∧ ψ is

satisfiable, the SAT-solver not only returns “satisfiable”, but also a valid assignment;

all features f ′ that are true in that assignment cannot be dead (since, at least, they are

1Note that, this operation can also be computed using all sat function provided by BDD libraries. However,

as all sat function has a complexity O(2m.n), where m and n are the number of nodes and variables (features),

respectively, it has the same scalability limitations.
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included in the product returned by the solver). Therefore, checking the satisfiability

of f ′ ∧ ψ can be avoided.

Although Lesla et al.’s work does not deal with core feature detection, their reasoning

can be applied to that kind of features as well: whenever f∧ψ or ¬ f∧ψ are satisfiables,

none of the features f ′ that are false in the satisfying assignment returned by the solver

can be core. This approach is described by Algorithm 3.

• The third one consists of computing commonality features1. In this case, a feature f

is core iff the number of valid products that include f is the same as the number of

valid products represented by the model. Similarly, a feature f is dead iff the num-

ber of valid products that include f is zero [vDK02, PHRCT06, ZMZ06, BSTRC07,

ZYZJ08, TBD+08, MWC09, TC09, HFACC11]. This approach, where ψ is the logic

representation of the model with n features, is described by Algorithm 4. The key here

is to repeatedly call the sat count function, once for each feature f , to get the number

of satisfying assignments of ψ ∧ f .

3.2.2.1 Computational cost

Let m the number of nodes of the BDD and n the number of variables (features) of

the boolean formula. The straightforward approach (Algorithm 2) and Lesla et al.’s

approach (Algorithm 3) require calling apply function n times, as that function has

complexity O(m), these approaches have complexity O(m.n). Finally, as we discussed

in Section 3.2.1, Algorithm 4 has complexity O(m.n). Note that, although the time

complexity for Algorithm 3 is the same that for Algorithm 4, in practice it often saves

steps and thus runs faster. Table 3.9 summarizes the complexities for Algorithms 2, 3

and 4.

1See Sections 3.2.1 and 3.2.1 for a complete description of feature commonality and reviewing the most

common approaches to compute feature commonalities.
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Core & dead features

Strainghtforward apch. Lesla et al.’s apch. Commonality apch.

O(m.n) O(m.n) O(m.n)

Table 3.9: Computational complexity for Algorithms 2, 3 and 4.

Algorithm 2: get core and dead features (straightforward core/dead approach)

1 Input boolean formula ψ; set F of all features

2 Output two lists including all core and dead features

3 var core features, dead features: list;

4 begin

5 core features = {}

6 dead features = {}

7 forall f ∈ F do

8 if ψ ∧ f , bdd f alse then

9 if ψ ∧ ¬ f == bdd f alse then

10 core features.insert( f )

11 else if ψ ∧ ¬ f , bdd f alse then

12 dead features.insert( f )

13 return core features, dead features
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Algorithm 3: get core and dead features (Lesla’s core/dead apch.)

1 Input boolean formula ψ; set F of all features

2 Output two lists including all core and dead features

3 var core features, dead features, true features, true features: list;

4 begin

5 core features = {}

6 dead features = {}

7 assignment = sat one(ψ) // get a satisfying feature assignment

8 true features = get features with true value(assignment)

9 false features = get features with false value(assignment)

10 forall f ∈ F do

11 if f ∈ true features then

12 if ψ ∧ ¬ f == bdd f alse then

13 core features.insert( f )

14 else if ψ ∧ f == bdd f alse then

15 dead features.insert( f )

16 return core features, dead features

Algorithm 4: get core and dead features (Commonality core/dead approach)

1 Input boolean formula ψ; set F of all features

2 Output two lists including all core and dead features

3 var core features, dead features: list; count f, count: int;

4 begin

5 core features = {}

6 dead features = {}

7 count = sat count(ψ)

8 forall f ∈ F do

9 count f = sat count(ψ ∧ f )

10 if count == count f then

11 core features.insert( f )

12 else if count f == 0 then

13 dead features.insert( f )

14 return core features, dead features
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3.2.3 Measures to Identify Highly Required and Incompatible Features

Valuable information can be extracted from variability models merely by looking at how

features interact with each other in all valid products[ADCBZ09, DCB10, Boe11]. On the

one hand, if a feature is required by many others, it can be said that it is highly necessary.

On the other hand, if a feature excludes many others, it is highly incompatible.

In particular, Boender [Boe11] provides the following measures to quantify feature ne-

cessity and incompatibility:

1. The impact set of a feature f is composed of all the features f ′ that require f to be

enabled whenever they are included in a valid product, i.e.,

Impact Set( f ) = { f ′ · f ′ ⇒ f }

2. The exclusion set of a feature f is composed of all the features f ′ that are required to

be disabled whenever f is included in a valid product, i.e.,

Exclusion Set( f ) = { f ′ · f ⇒ ¬ f ′}

3. The necessity and incompatibility of a feature f are the cardinal of its impact and

exclusion set, respectively, divided by the total number of features #F, i.e.,

Necessity( f ) =
#Impact Set

#F
, Incompatibility( f ) =

#Exclusion Set

#F

For instance, Table 3.10 summarizes feature co-ocurrences in Figure 3.10. According to

Table 3.6, all products that include f4, f5, or f6, also include f3. So the impact set of f3 is

{ f3, f4, f5, f6} , and the necessity of it is 4
6

(it is required by 4 of the 6 features).

Feature Impact set Necessity Exclusion set Incompatibility

f1 { f1 , f3 , f4, f5, f6}
5
6

{ f2}
1
6

f2 ∅ 0 { f1, f2, f3, f4 , f5 , f6} 1

f3 { f3, f4, f5 , f6}
4
6

{ f2}
1
6

f4 { f4}
1
6

{ f2, f5, f6}
3
6

f5 { f5}
1
6

{ f2, f4}
2
6

f6 { f6}
1
6

{ f2, f4}
2
6

Table 3.10: Summary of feature co-ocurrences in Figure 3.10

It is interesting to note that essential, dispensable and highly required or incompatible

features are interconnected by the following relations, where F is the set of all features:
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1. Impact Set(f) = F ⇔ f is core

2. Exclusion Set(f) = F ⇔ f is dead

The following two main approaches are found in the literature to identify highly required

or incompatible features: both of them are based on repeatedly calling the bdd sat count

function. Note that, the second one proceeds in a similar way that Lesla’s et al. approach.

• Algorithm 5 shows how the first one proceeds to compute the impact and exclusion

sets. It checks the following two conditions for all pairwise combinations of features

f and f ′:

1. If sat count(ψ ∧ f ) and sat count(ψ ∧ f ∧ f ′) coincide, then f belongs to the f ′

impact set. Similarly, a SAT solver can be used. In such case, if solver(ψ ∧ f ) is

satisfiable and solver(ψ∧ f ∧¬ f ′) is unsatisfiable then f belongs to the f ′ impact

set respectively.

2. If sat count(ψ ∧ f ∧ f ′) is zero then f ′ belongs to the f exclusion set. With a

solver, it is enough to check if solver(ψ ∧ f ∧ f ′) is unsatisfiable.

The problem remains tractable if one just wants to check whether a feature requires or

excludes another. However, if one wants to get the exclusion and impact set for all the

features in a variability model, this algorithm requires calling the sat count function

n·(n−1) times. Therefore, if the computation is performed with a BDD, the complexity

is O(m·n2). Since there are reported models in the literature with thousands of features,

this algorithm is not feasible [BSL+10, BSL+13].

• Boender [Boe11] proposes Algorithm 6, which is similar to Algorithm 3. It includes

the following shortcut: for each feature f , a satisfying assignment a of ψ ∧ f is com-

puted using the sat one function (line 9), which has time complexity O(m) [Bry86].

If a feature f ′ is true in a, it cannot belong to f exclusion set (i.e., since there is at

least one product that includes both f and f ′, they cannot be incompatible). So line 18

avoids the unnecessary computation sat count(ψ ∧ f ∧ f ′) for such f ′. Likewise, if a

feature f ′ is false in a, f ′ cannot be part of f impact set, and so line 22 avoids calling

sat count(ψ ∧ f ∧ f ′). Although the time complexity for Algorithm 6 is the same that

for Algorithm 5, in practice it usually saves steps and thus runs faster.
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Algorithm 5: get impact and exclusion sets (Commonality impact/exclusion apch.)

1 Input boolean formula ψ; set F of all features

2 Output two hash tables including for each feature its impact and exclusion sets

3 var impact sets, exclusion sets: hash; count, count’: int;

4 begin

5 impact sets = Hash.new

6 exclusion sets = Hash.new

7 forall f ∈ F do

8 count = sat count(ψ ∧ f )

9 if count == 0 then

10 impact sets[ f ] = {}

11 exclusion sets[ f ] =F

12 else

13 impact sets[ f ] = { f}

14 exclusion sets[ f ] = {}

15 forall f ′ ∈ F\{ f } do

16 count’ = sat count(ψ ∧ f ∧ f ′)

17 if count’ == 0 then

18 exclusion sets[ f ].insert( f ′)

19 else if count == count’ then

20 impact sets[ f ′].insert( f )

21 return impact sets, exclusion sets
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Algorithm 6: get impact and exclusion sets (Boender’s apch.)

1 Input boolean formula ψ; set F of all features

2 Output two hash tables including for each feature its impact and exclusion sets

3 var impact sets, exclusion sets: hash; count, count’: int; true features, true features: list;

4 begin

5 impact sets = Hash.new

6 exclusion sets = Hash.new

7 forall f ∈ F do

8 count = sat count(ψ∧ f )

9 assignment = sat one(ψ ∧ f ) // get a satisfying feature assignment

10 true features = get features with true value(assignment)

11 false features = get features with false value(assignment)

12 if count == 0 then

13 impact sets[ f ] = {}

14 exclusion sets[ f ] = F

15 else

16 impact sets[ f ] = { f}

17 exclusion sets[ f ] = {}

18 forall f ′ ∈ F\
(

{ f } ∪ exclusion sets[f] ∪ true features
)

do

19 count’ = sat count(ψ ∧ f ∧ f ′)

20 if count’ == 0 then

21 exclusion sets[ f ].insert( f ′)

22 exclusion sets[ f ′].insert( f )

23 forall f ′ ∈ F\
(

{ f } ∪ false features
)

do

24 count’ = sat count(ψ ∧ f ∧ f ′)

25 if count == count’ then

26 impact sets[ f ′].insert( f )

27 return impact sets, exclusion sets
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3.2.3.1 Computational cost

Table 3.9 summarizes the complexities for Algorithms 5 and 6. Let m the number of nodes

of the BDD and n the number of features (variables) of the boolean formula. The straightfor-

ward approach (Algorithm 5) requires calling apply function n · (n−1) times, as that function

has complexity O(m), this approaches has complexity O(m · n2). On the other hand, although

Bohender’s approach (Algorithm 6) is often faster in practice than Algorithm 5, it also has

complexity O(m · n2).

Impact & exclusion sets

Strainghtforward apch. Boender’s apch.

O(m.n2) O(m.n2)

Table 3.11: Computational complexity for Algorithms 5 and 6
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3.3 Product Derivation

Product derivation, also known as product configuration or decision-making process, can be

defined as the process of selecting features in the variability model in order to build valid

products or specifications for a product line system. In this context, products are also called

derivatives, specifications, configurations, etc.

As Chen et al. [CE11] point out, the benefits of the SPL paradigm highly depends on

how efficient the derivation process is, given that whenever a new product is required the

derivation process is used.

It is well known that variability models provide a big number of interrelated features. So,

to derive a valid product, all constraints between its constituent features must be satisfied.

Checking by hand product validity is infeasible for all, but the most trivial variability models.

Thus, an automated mechanism to support this process is needed.

In practice, the derivation process is assisted by automated tools commonly called con-

figurators. Research on automated configurators is mainly focused on consistency checking

and optimization [SW98, Jun06]. For example, reasoning engines such as BDD libraries,

SAT solvers and Logic-Truth Maintenance systems (LTMS) have been used to detect in-

valid products (i.e., those which violate some feature interdependencies) [DGR11, SHN+07,

Men09]; to provide explanations for derivation flaws [WBS+10, Jan10], to optimize products

(i.e., to find products whose cost is less or equal than a given one) [HHRV11, SAH+11,

SRK+11], etc.

f1 f2 f3

f4 f5 f6

Figure 3.11: A variability model example. (rep. Figure 2.1)

In most cases, configuring a product involves one or more end users, also called decision

makers, that translate the requirements they have on the product into decisions about how
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Valid Products

1 f1, ¬ f2, ¬ f3, ¬ f4, ¬ f5, ¬ f6

2 f1, ¬ f2, f3 , ¬ f4, ¬ f5, ¬ f6

3 f1, ¬ f2, f3 , f4, ¬ f5, ¬ f6

4 f1, ¬ f2, f3 , ¬ f4, f5 , ¬ f6

5 f1, ¬ f2, f3 , ¬ f4, ¬ f5, f6

6 f1, ¬ f2, f3 , ¬ f4, f5 , f6

Table 3.12: Valid products for Figure 3.11. (rep. Table 2.1)

variability should be handled. As an example, to derive the product P6={ f1 , f3, f5, f6} from

our example in Figure 3.11, we need to answer the following questions:

1. is f1 in the product? Yes. Note that, questions about f2 are not needed because cur-

rent automated configurators guarantee the derivation of valid products ensuring the

satisfaction of all model constraints. So, when the first question is answered, the con-

figurator deduces that the product being configured necessarily excludes f2.

2. f3 ? No.

3. f4 ? No.

4. f5 ? Yes.

5. f6 ? Yes.

This way, the configurator is indirectly saving the decision-maker from answering the

irrelevant question, “is f2 in the configuration?”.

The problem is finding an optimal question ordering that maximizes the number of de-

cisions automatically derived from other questions previously answered. In other words,

reducing the number of questions that a decision maker needs to answer.

Despite the importance of the interactive question ordering problem that this thesis tackles,

which was pointed out by Steinberg more than thirty years ago [Ste80], there is little research

on it.

A straightforward approach to get such optimal question ordering is computing for each

valid product all possible orderings and, thus, finding the ordering with less questions on

average for every product.
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orderings (n!) products (≤ 2n) avg number

{ f1} { f1, f3} { f1 , f3 , f4} { f1 , f3, f5} { f1 , f3 , f6} { f1, f3 , f5 , f6} of questions

f1 ≺ f2 ≺ f3 ≺ f4 ≺ f5 ≺ f6 5 5 5 5 5 5 30/6

f1 ≺ f3 ≺ f2 ≺ f4 ≺ f5 ≺ f6 5 5 5 5 5 5 30/6

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

f6 ≺ f5 ≺ f4 ≺ f3 ≺ f2 ≺ f1 6 4 3 2 2 2 19/6

Table 3.13: Brute force approach to compute the optimal ordering on average

Table 3.13 sums up the needed computations. For instance, the next-to-last column sum-

marizes the number of questions needed for derivative P6 = { f1 , f3 , f5 , f6}. Ordering f6

≺ f5 ≺ f4 ≺ f3 ≺ f2 ≺ f1 needs two questions, f1 ≺ f2 ≺ f3 ≺ f4 ≺ f5 ≺ f6 needs five, and so

on. Afterwards, the average number of questions for each ordering is computed. Using this

approach in the previous example, ordering f6 ≺ f5 ≺ f4 ≺ f3 ≺ f2 ≺ f1 would be selected

as an optimal one. As a result, the question sequence for product P6 = { f1 , f3 , f5 , f6}

would be shortened to (1) is f6 in the product? yes. Then, the configurator deduces that the

product being configured necessarily excludes f4. In addition, as f6 requires f3 and f1, the

configurator deduces that the product necessarily includes f3 and f1. Finally, as f1 excludes

f2, the configurator excludes it. (2) is f5 in the product? yes, and the process ends. In this

case the configurator has saved four questions.

Unfortunately, this approach requires m · n! computations, where n is the number of

features of the variability model and m is a number ≤ 2n. So it is extremely expensive

in computational terms and does not scale except for the most trivial variability models.

To overcome the scalability limitations of the former approach, two recent approaches that

specifically deal with this problem are provided by Chen et al. [CE11] and Mazo et al.

[MDSD14]. In the following lines, both of them are described:

Chen et al.’s approach Proposes to minimize the number of configuration steps by sorting

the features according to their probability1 of being included in a product. (See Section

3.2.1 for a complete description of probability).

1in their original paper and with a fully equivalent meaning, Chen et al. use the term selectivity instead

of probability. As it will be discussed in Chapter 5 our approach follows an entropy driven heuristic and, the

Information Theory concept of entropy is defined in terms of probability (see Section 5.1), we have preferred

to use probability throughout this thesis.
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Mazo et al.’s approach Proposes the following heuristics for ordering configuration ques-

tions:

Heuristic 1 Features with the smallest domain first: choose first the feature with the

smallest domain. The domain of a feature is the set of possible values that the

feature can take according to its domain definition and the constraints in which

the feature is involved.

Heuristic 2 The most constrained features first: choose the feature that participates in

the largest number of constraints.

Heuristic 3 Features appearing in most products first. This heuristic is exactly the

same as Chen et al’s approach.

Heuristic 4 Automatic completion when there is no choice. This heuristic “provides

a mechanism to automatically complete the configuration of features where only

one value of their domain is possible [...] it also works when a feature has several

values on its domain but only one is valid”. In ascending order of computa-

tional cost and descending order of constraint propagation capability, Mazo et

al. summarize three approaches to implement Heuristic 4 when the variability

model is encoded as a Predicate Logic formula: (i) forward-checking, (ii) par-

tial look-ahead, and (iii) full look-ahead (i.e., whereas forward-checking is the

fastest algorithm but produces the most limited form of constraint propagation

during search, full look-ahead is the most expensive approach but gets the best

results). In this thesis, variability models are encoded as BDDs, where full con-

straint propagation is computationally feasible [Men09]. Instead of considering

Heuristic 4 apart, we will use it as a complement to the remaining heuristics by

running constraint propagation after every configuration step.

Heuristic 5 Features required by the latest configured feature first: choose the feature

that has the largest number of constraints in common with already configured

features.

Heuristic 6 Features that split the problem space in two first: set first the features that

divide the problem space in two parts of approximately the same size. Unfor-

tunately, Mazo et al. do not provide a way to implement this heuristic which

takes into account all model constraints. In particular, Mazo et al. propose a
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simplification by just using the tree structure of a FD, or the variation points of

an orthogonal variability model [PBL05], but not processing the cross-tree con-

straints.

3.4 Summary

As a result of our bibliometric analysis, we have identified two of the most prominent topics

in the SPL research area in recent years: the automated analysis of variability models and

product derivation. According to Figure 3.4.c, from 2010 to 2014, automated analysis of

variability models has played a motor role. In addition, this is the most performing topic

in this period, as Table 3.5 shows. On the other hand, the derivation of particular products

has gained importance in the fourth period, as Figure 3.8.f and the position of PRODUCT-

DERIVATION in the strategic diagram in Figure 3.4.d show. Therefore, the rest of this

chapter was dedicated to review these important topics, which will be the area of action of

this thesis.

Since variability models specify how features can be combined to get valid products, it

is possible to compute and identify the commonality, the incompatibility and the relative im-

portance of the features by directly inspecting the models. Nevertheless, existing approaches

to carry out such computations have the following limitations:

1. Algorithms to compute the measures are inefficient. As we have seen, the usual way

to reason on variability models (by repeatedly calling logic engines) has poor time

performance and so it hinders user interactivity.

2. Measures are rigid. Although some measures have been proposed [BSRC10, DCB10,

Boe11] for feature incompatibility and relative importance, their sensitivity is not ad-

justable and thus they are often too rigid in practice. For instance, the dead measure is

commonly used to detect if a feature is expendable for a product line [BSRC10]. Its

traditional definition is: “a feature is dead if, due to its dependencies and incompat-

ibilities with the remaining features, it cannot be included in any product”. However,

imagine a feature that can only be included in 1 percent of the products. The high

dispensability of such feature would go unnoticed for the current definition of dead

feature.
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To overcome such limitations, in Chapter 4 we will provide new ad-hoc algorithms that

directly interact with the data structure of the BDD that encodes a variability model, and thus

they are more efficient than the black-box reuse of logic engines.

On the other hand, as we have discussed in Section 3.3 the process for building a product

is not a trivial task and it requires a lot of work in order to translate the user requirements

into the decisions needed to properly derive the product. So, there is a need for guidance

support for product derivation. In particular, in Chapter 5 we will focus on the interactive

question ordering problem and how to determine the optimal path through a series of related

questions to any possible product.
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CHAPTER

4
Automated Analysis of

Variability Models

As argued in Chapter 3, the usual way to compute analysis measures is inefficient for

some important ones such as computing features commonalities, impact/exclusion sets of

features, and core/dead features. To overcome such limitations, an algorithm based on the

glass-box reuse of BDD libraries for each hard operation is proposed. In particular, this

dissertation supports hard operations by providing algorithms that directly interact with the

data structure of the BDD that encodes a variability model. Furthermore, as we have also

commented, impact/exclusion sets of features and core/dead features are too rigid to identify

essential, dispensable, and highly incompatible features. For instance, a feature which is

only included in one valid product is highly dispensable. However, it would not fit into the

current definition of dead feature. We proposed an algorithm, based on the concept of feature

commonality, which adds sensitivity to exist measures to identify essential, dispensable, and

highly incompatible features. The remainder of this chapter is structured as follows: first,

an algorithm to efficiently compute features commonalities of a variability model codified

into BDD is presented in Section 4.1. Later, two algorithms to identify essential, dispensable

and highly incompatible features are proposed in Sections 4.2 and 4.3, respectively. Section

4.4 presents our algorithm to support our measure redefinition. The chapter ends up by

summarizing the computational cost of our approaches w.r.t the related work in Section 4.5.
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4.1 Commonality

In this section we provide an algorithm to compute feature commonalities of a Boolean

formula encoded as a BDD. First, some definitions required to understand our algorithm are

given. Then, the algorithm is presented.

Let us use our small example introduced in Section 2.1 again. Figure 4.2 is its BDD

representation using the variable ordering f1 ≺ f2 ≺ f3 ≺ f4 ≺ f5 ≺ f6
1.

f1 f2 f3

f4 f5 f6

Figure 4.1: A variability model example (rep. Figure 2.1)

ψ ≡ ( f1 ∨ f2 ∨ f3 ∨ f4 ∨ f5 ∨ f6) ∧

(¬ f2 ∨ f3) ∧ (¬ f3 ∨ f1) ∧ (¬ f4 ∨ f3) ∧ (¬ f5 ∨ f3) ∧ (¬ f6 ∨ f3) ∧

(¬ f1 ∨ ¬ f2) ∧ (¬ f4 ∨ ¬ f5) ∧ (¬ f4 ∨ ¬ f6) (4.1)

Valid Products

1 f1, ¬ f2, ¬ f3, ¬ f4, ¬ f5, ¬ f6

2 f1, ¬ f2, f3, ¬ f4, ¬ f5, ¬ f6

3 f1, ¬ f2, f3, f4, ¬ f5, ¬ f6

4 f1, ¬ f2, f3, ¬ f4, f5, ¬ f6

5 f1, ¬ f2, f3, ¬ f4, ¬ f5, f6

6 f1, ¬ f2, f3, ¬ f4, f5, f6

Table 4.1: Valid products for Figure 4.1 (rep. Table 2.1)

1note that a logic formula may be encoded with different BDDs according to the variable ordering used to

synthesize the BDD. Likewise, our algorithm produces the same results for equivalent BDDs (i.e., BDDs that

encode the same formula)
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Figure 4.2: BDD for Eq. 4.1 according to the var ordering f1 ≺ f2 ≺ f3 ≺ f4 ≺ f5 ≺ f6.
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4. AUTOMATED ANALYSIS OF VARIABILITY MODELS

4.1.1 Theoretical basis of our approach

The commonality of a feature f can be defined as its satisfying probability, i.e., let ψ be a

boolean formula that encodes a variability model, and n the number of features of the model,

the commonality of a feature is the number of satisfying assignments of ψ where f is true

divided to the number of satisfying assignments of ψ.

Definition 1 The satisfying set of a boolean formula ψ( f1, ..., fn), denoted S ψ, is defined by

Equation 4.2.

S ψ =
{

( f1, ..., fn) · ψ( f1, ..., fn) ≡ true
}

(4.2)

Definition 2 The satisfying set of the variable fi of a boolean formula ψ( f1, f2, ..., fn), de-

noted S ψ| fi
, is defined by Equation 4.3.

S ψ| fi
=

{

( f1, ..., fi−1, fi+1, ..., fn) · ψ( f1, ..., fi−1, fi+1, ..., fn) ≡ true
}

(4.3)

For instance, according to Table 4.1, #S ψ = 6 since there are 6 valid products, i.e., 6

rows where ψ evaluates to true1, and #S ψ| f4 = 1 because f4 = 1 in 1 of the 6 rows where ψ is

evaluated to true.

Definition 3 The satisfying probability of a boolean formula ψ( f1, ..., fn), denoted Pr(ψ), is

defined by Equation 4.4.

Pr(ψ) =
#S ψ

2n
(4.4)

Definition 4 The satisfying marginal probability of a variable fi in a boolean formula

ψ( f1, f2, ..., fn), denoted MPr(ψ, fi), is defined by Equation 4.5.

MPr(ψ, fi) =
#S ψ| fi

2n
(4.5)

Definition 5 The satisfying probability of a variable fi in a boolean formula ψ( f1, f2, ..., fn),

denoted Pr(ψ| fi), is defined by Equation 4.6.

Pr(ψ| fi ) =
#S ψ| fi

#S ψ

(4.6)

1throughout this section 0/1 and false/true are used interchangeably
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For instance, looking at Table 4.1, it is easy to see that Pr(ψ) = 6
26 , MPr(ψ| f4) =

1
26 , and

Pr(ψ| f4) =
1
6
.

For convenience, from here on we denote Pr(ψ| fi) and MPr(ψ| fi) as Pr( fi) and MPr( fi),

respectively, which is consistent with the notation introduced in Section 3.2 (i.e., if a vari-

ability model is encoded by ψ then: #S ψ| fi
represents the number of products than include fi,

#S ψ is the total number of products, and consequently, Pr(ψ| fi) = Pr( fi)).

4.1.2 Algorithm to Compute Feature Commonalities

Pr( fi) is computed jointly by Algorithms 7, 8 and 9. Figure 4.4 summarizes the computations

for the BDD in Figure 4.2. Let us examine how our approach proceeds:

Algorithm 7 computes Pr( fi) as Pr( fi) =
MPr( fi)

Pr(ψ)
by calling the auxiliary Algorithms 8 and 9.

Algorithm 8 computes Pr(ψ). A nice mental picture to understand Algorithm 8 is thinking

in pouring 1 liter of water from the BDD root to the terminal nodes. 1 liter goes

through the root, then half a liter goes through the low branch and half a liter through

the high branch. This procedure advances until the water reaches the leaves. Hence,

Pr(ψ) is the amount of water that node 1 has.

In Figure 4.4, through node v8 goes 1 liter (i.e., formula sat prob[8]1 = 1). Half of

it goes to v7 and the other half to 0-terminal. The 1
2

liter of water that reaches v7 is

divided in two, half of it goes to 0-terminal and the other half to v6, and so on. Thus,

formula sat prob is recomputed at each node: it starts being 1 at v8, at v7 is 1
2
, at v6 is

1
4
, . . ., at v2 is 1

16
, and finally at the 1-terminal node is 3

32
, so Pr(ψ) = 3

32
.

Algorithm 9 computes MPr( fi) by following the procedure proposed by Bryant [Bry86] for

traversing a BDD and performing some operation on its nodes. The algortithm is called

at the top level with the root node as argument and with the mark fields of the nodes

being all false. It then systematically visits every node in the graph by recursively

visiting the subgraphs rooted by the two children. As it visits a node, it sets to true the

value of the mark field, so that it can later determine whether a child has already been

visited.

1according to Tables 2.2 and 2.3, the root node has label v8 and it is in the position 8 of the bdd array
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In particular, let us examine how it computes MPr( f5). There are two valid products

when when f5 is true, i.e, ψ evaluates to true when f5 is true two times:

1. When the call get marginal prob(3, ...) is made, lines 10-23 compute the mar-

ginal probability of f5 for the explicit path v3 → v2. The probabilities due to the

low and high branches of vi are stored into the prob low and prob high variables,

respectively. As bdd[v3].low , 0, a recursive call is made to compute the total

probability due to the low descendants of v3 (i.e., get marginal prob(2, ...)). As a

result: total prob[v2] = prob lowv2
+ prob highv2

=
1

32
+ 0 = 1

32

prob low = prob low =
total prob[v2]·

formulal sat prob[v3]

2.0

f ormula sat prob[v2]
=

1
32
·

1
8
2

1
16

=
1
32

Since bdd[v3].high = 0, prob high is 0.

Finally: prob[bdd[v3].index] = prob high = 0

2. In addition, the following implicit paths v5 d v3 → v2 d 1 − terminal and v5 d

v3 → v2 → 1 − terminal that have been removed from the reduced BDD (Figure

4.3) should be considered to compute the marginal probability of f5. Lines 24-31

account for that kind of implicit paths, adjusting the marginal probability with

the variables omitted in the paths. For instance, when the algorithm is called for

v5, the marginal probability of f5 is updated with half the prob low of v5.

To sum up:

MPr( f5) = MPr(v5 d 1 − terminal) +MPr(v3 → v2) =
prob lowv5

2
+ 0 =

1
16

2
=

1

32

Pr( f5) =
MPr( f5)

Pr(ψ)
=

1
32

3
32

=

1

3

Figure 4.4 summarizes the computations for the BDD in Figure 4.2.
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f4, v5

f5, vx

f6, vy

1

is reduced to
−−−−−−−−−→

f4, v5

1

Figure 4.3: Algorithm 9 to update MPr( f ) for those features whose nodes has been removed

from the BDD due to Reduction R2.

Algorithm 7: get prob

1 Input bdd and var ordering arrays

2 Output an array which stores Pr( fi) in position i

3 var formula sat prob, total prob: array[0..length(bdd)-1] of float;

4 prob: array[0..length(var ordering)-1] of float; i: int;

5 begin

6 for
(

i=0; i < length(bdd); i++
)

do

7 total prob[i] = 0.0

8 for
(

i=0; i < length(var ordering); i++
)

do

9 prob[i] = 0.0

10 formula sat prob = get formula sat prob(bdd)

11 get marginal prob(length(bdd)-1, total prob, formula sat prob, prob, bdd, var ordering)

12 for
(

i=0; i < length(var ordering); i++
)

do

13 prob[i] =
prob[i]

formula sat prob[1]

14 return prob
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Figure 4.4: Commonality computation for the BDD in Figure 4.2
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4.1 Commonality

Algorithm 8: get formula sat prob

1 Input bdd array

2 Output an array which in position 1 stores Pr(ψ)

3 var formula sat prob: array[0..length(bdd)-1] of float; i: int

4 begin

5 for
(

i=0; i < length(bdd)-1; i++
)

do

6 formula sat prob[i] = 0.0 // non-root nodes prob is initialized to 0

7 formula sat prob[i] = 1.0 // root node prob is 1

8 i=length(bdd)-1

9 while i > 1 do // for all non-terminal nodes

10 formula sat prob[bdd[i].low] +=
formula sat prob[i]

2.0

11 formula sat prob[bdd[i].high] +=
formula sat prob[i]

2.0

12 i -= 1

13 return formula sat prob
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Algorithm 9: get marginal prob

1 Input v: 0..length(bdd)-1; total prob, formula sat prob: array[0..length(bdd)-1] of float;

2 prob: array[0..length(var ordering)-1] of float; bdd and var ordering arrays

3 Output prob is passed by reference and, at the end of the algorithm execution,

4 it stores MPr( fi) in position i

5 var prob low, prob high: float; i: int

6 begin

7 prob low = 0.0

8 prob high = 0.0

9 bdd[v].mark = not bdd[v].mark

// explicit path recusive traversal

10 if bdd[v].low == 1 then

11 prob low =
formula sat prob[v]

2.0

12 else if bdd[v].low , 0 then

13 if bdd[v].mark , bdd[bdd[v].low].mark then

14 get marginal prob(bdd[v].low, total prob, formula sat prob, prob, bdd, var ordering)

15 prob low =
total prob[bdd[v].low]·

formula sat prob[v]

2.0

formula sat prob[bdd[v].low]

16 if bdd[v].high == 1 then

17 prob high =
formula sat prob[v]

2.0

18 else if bdd[v].high , 0 then

19 if bdd[v].mark , bdd[bdd[v].high].mark then

20 get marginal prob(bdd[v].high, total prob, formula sat prob, prob, bdd, var ordering)

21 prob high =
total prob[bdd[v].high]·

formula sat prob[v]

2.0

formula sat prob[bdd[v].high]

22 total prob[v] = prob low + prob high

23 prob[bdd[v].index] += prob high

// implicit path iterative traversal

24 i = bdd[v].index + 1

25 while i<bdd[bdd[v].low].index do

26 prob[i] +=
prob low

2.0

27 i +=1

28 i = bdd[v].index + 1

29 while i<bdd[bdd[v].high].index do

30 prob[i] +=
prob high

2.0

31 i +=1
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4.2 Automated Approach to Detect absolutely Essential and

Dispensable Features

In this section we provide an algorithm to detect absolutely essential and dispensable features

in variability models encoded as BDDs. First, some definitions are provided. Then, the

algorithm is presented.

4.2.1 Theoretical basis of our approach

A valuation of a formula ψ is an assignment of each variable in ψ to a truth value. For

instance, a possible valuation for Equation 4.1 is { f1 = 1, f2 = 0, f3 = 0, f4 = 0, f5 = 0, f6 =

0}, which evaluates ψ to true. If ψ encodes a variability model, the valid products of the

model are represented by the valuations that make ψ true [Bat05]. For example, the former

valuation represents the product P1 in Table 4.1, which just includes the feature f1.

In BDDs, valuations are represented as paths from the root to the terminal nodes. For

instance, the BDD in Figure 4.2 encodes the aforementioned valuation as v8 → v7 d v6 d

v4 d v3 d v2 d 1. A valuation results true if its corresponding path ends in the 1-terminal

node.

Let f →+ 1 and f d+ 1 be two predicates. f →+ 1 is true if the 1-terminal node is

reachable from the root traversing the high edge of some node labelled with f ; f d+ 1 is

true if the 1-terminal node is reachable through a low edge of some node labelled with f .

For example, in Figure 4.2, f3 →+ 1 is true due to the path v8 → v7 d v6 → v5 d 1.

Nevertheless, f1 d+ 1 is false because v8 is the only node labeled with f1 and, once the low

edge of v8 is traversed, it is not possible to reach the 1-terminal node.

Lemma 1 A feature f is core iff f →+ 1 is true and f d+ 1 is false.

Lemma 2 A feature f is dead iff f →+ 1 is false and f d+ 1 is true.

Proof : By definition: a feature f (i) is core iff all valid products include f , and (ii) it is

dead iff no valid product includes f . That is, when determining if f is core or dead, only

the valid products are of interest or, in BDD terms, the paths from the root to the 1-terminal

node. So, we are just concerned about the cases where f is traversed and the 1-terminal node

is reached, i.e., when f →+ 1 is true or f d+ 1 is true:
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1. If f →+ 1=true and f d+ 1=true, the 1-terminal node may be reached traversing high

and low edges of nodes labelled with f , or f is omitted in any path where 1-terminal node

may be reached due to Reduction R2 (see Section 2.4). That is, f is included in some

valid products, but not in another valid ones. Therefore, f neither is core, nor is dead.

2. If f →+ 1=true and f d+ 1=false, the 1-terminal node cannot be reached traversing

low edges of nodes labelled with f (due to f d+ 1=false). All the paths that end in the

1-terminal node go across a high edge of f . In other words, all valid products include f

and so f is core.

3. If f →+ 1=false and f d+ 1=true, the 1-terminal node cannot be reached traversing

high edges of nodes labelled with f (due to f →+ 1=false). All the paths that end in the

1-terminal node go across a low edge of f . As, f is disabled in all valid products, f is

dead.

4.2.2 Algorithm to detect core and dead features

Algorithm 10 computes the core and dead features from an input formula ψ, which represents

a given variability model. To do so, the algorithm builds the BDD that encodes ψ according

to an input variable ordering (line 10). Two arrays named through high array and through -

low array are used to store in position i-1 the values of fi →+ 1 and fi d+ 1, respectively.

The computation of such arrays is performed by Algorithm 12 (lines 13-14). For instance,

after executing Algorithm 12 for Figure 4.2,

through high array = [true, false, true, true, true, true]

through low array = [false, true, true, true, true, true]

So,

through high array[1] = f2 →+ 1 = false

through low array[1] = f2 d+ 1 = true

Then, Algorithm 10 applies Lemmas 1 and 2 to identify the core and dead features

according to through high array and through low array (lines 15-19). For instance, since

f2 →+ 1 = false and f2 d+ 1 = true, Algorithm 10 determines that f2 is dead.
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Algorithm 10: get core and dead features (our approach)

1 Input bdd and var ordering arrays

2 Output two lists : one with all the core features, and

3 another one with all the dead features

4 var core features, dead features : list; i: int;

5 through high array, through low array :

6 array[0..n-1] of boolean;

7 it reaches the 1 terminal array : array[0..m − 1] of boolean

8 begin

9 core features = {}; dead features = {};

10 through high array = [false, false, . . ., false]

11 through low array = [false, false, . . ., false]

12 it reaches the 1 terminal array = [false, false, . . ., false]

13 does it reach the 1-terminal?(length(bdd)-1,

14 through high array, through low array,

15 it reaches the 1 terminal array)

16 for
(

i=0; i < length(var ordering); i++
)

do

17 if through high array[i] ∧ ¬through low array[i] then

18 core features.insert(var ordering[i])

19 else if ¬through high array[i] ∧ through low array[i] then

20 dead features.insert(var ordering[i])

21 return core features, dead features

Algorithm 11: update reduced vertices

1 Input v: 0..m-1; direction : string ∈ {“high”, “low”};

2 through high array, through low array : array[0..n-1] of

3 boolean;

4 Output through high array and through low array are passed

5 by reference

6 var i: int;

7 begin

8 if direction == “high” then

9 for
(

i = bdd[v].index + 1; i < bdd[bdd[v].high].index; i++
)

do

10 through high array[i] = true; through low array[i] = true;

11 else

12 for
(

i = bdd[v].index + 1; i < bdd[bdd[v].low].index; i++
)

do

13 through high array[i] = true; through low array[i] = true;
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Algorithm 12: does it reach the 1-terminal?

1 Input v: index of a node in the bdd (i.e., 0..m-1);

2 through high array, through low array : array[0..n-1] ofboolean;

3 it reaches the 1 terminal array :array[0..m − 1] of boolean

4 Output the algorithm returns true if v can reach the 1-terminal. Otherwise, it returns false;

5 through high array and through low array are passed by reference

6 begin

7 if ¬bdd[v].mark then

8 bdd[v].mark = true

// does v reach the 1-terminal through high?

9 if bdd[v].high == 1 then // the 1-terminal is reached

10 through high array[bdd[v].index] = true

11 it reaches the 1 terminal array[v] = true

12 update reduced nodes(v, “high”,

13 through high array, through low array)

14 else if bdd[v].high , 0 then // keep searching

15 it reaches the 1 terminal array[v] =

16 does it reach the 1-terminal?(

17 bdd[v].high,

18 through high array, through low array,

19 it reaches the 1 terminal array)

20 if it reaches the 1 terminal array[v] then

21 through high array[bdd[v].index] = true

22 update reduced nodes(v, “high”, through high array, through low array)

// does v reach the 1-terminal through low?

23 if bdd[v].low == 1 then // the 1-terminal is reached

24 through low array[bdd[v].index] = true

25 it reaches the 1 terminal array[v] = true

26 update reduced nodes(v, “low”, through high array, through low array)

27 else if bdd[v].low , 0 then // keep searching

28 it reaches the 1 terminal array[v] =

29 does it reach the 1-terminal?(

30 bdd[v].low, through high array, through low array,

31 it reaches the 1 terminal array)

32 if it reaches the 1 terminal array[v] then

33 through low array[bdd[v].index] = true

34 update reduced nodes(v, “low”, through high array, through low array)

35 return it reaches the 1 terminal array[v]
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To compute f →+ 1 and f d+ 1, Algorithm 12 follows the procedure proposed by

Bryant [Bry86] for traversing a BDD and performing some operation on its vertices. The

algorithm is called at the top level with the root vertex as argument and with the mark fields

of the vertices being all false. It then systematically visits every vertex in the graph by

recursively visiting the subgraphs rooted by the two children. As it visits a vertex, it sets to

true the value of the mark field, so that it can later determine whether a child has already been

visited. For each vertex, it is checked if the 1-terminal node is reached. If so, Algorithm 11

is called to update arrays through high array and through low array to account for the nodes

that have been removed from the BDD due to Reduction R2 (see Section 2.4). For instance,

as Figure 4.5 shows, the edge v5 d 1 in Figure 4.2 is the result of erasing vertices vx and vy

from the BDD because their high and low outgoing edges point to the same node. Taking

that removal into account and as f4 d+ 1 is true, then it follows that f5 →+ 1, f5 d+ 1,

f6 →+ 1 and f6 d+ 1 are also true.

f4, v5

f5, vx

f6, vy

1

is reduced to
−−−−−−−−−→

f4, v5

1

Figure 4.5: Algorithm 11 to update the 1-reachability for features whose vertices has been re-

moved from the BDD due to Reduction R2.

4.3 Automated Approach to Identify Highly Required and

Incompatible Features

This section describes an algorithm to compute the impact and exclusion sets of the features

represented by a variability model encoded as a BDD. In particular, our approach is based

on repeatedly calling Algorithm 10. Algorithm 13 summarizes how our approach proceeds.
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Algorithm 13: get impact and exclusion sets (our approach)

1 Input bdd and var ordering arrays

2 Output two arrays of lists : one including the impact set for each

3 feature, and another one including the exclusion set

4 for each feature

5 var core, core′, dead, dead′ : list

6 impact set, exclusion set : array[0..n-1] of list; i, j, k : int

7 begin

8 impact set =
[

{}, {}, . . ., {}
]

9 core, dead = get core and dead(bdd, var ordering)

10 for
(

i=0; i < length(var ordering); i++
)

do

11 if var ordering[i] ∈ dead then

12 impact set[i] = {}

13 exclusion set[i] = var ordering

14 else

15 if var ordering[i] ∈ core then

16 impact set[i] = var ordering

17 exclusion set[i] = dead

18 else

19 core′, dead′ = get core and dead(bdd ∧

20 var ordering[i], var ordering)

21 for
(

j=0; j < length(core′); j++
)

do

22 k = index of core′[ j] in var ordering

23 impact set[k].insert(var ordering[i])

24 exclusion set[i] = dead′

25 return impact set, exclusion set
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4.4 Measure Flexibilization

The sensitivity of existing measures to identify essential, dispensable and highly incompat-

ible features can be augmented using the concept of feature commonality, which accounts

for the likeliness of a feature to be included in a product. First, some definitions required to

understand our algorithm are given. Then, the algorithm is presented.

4.4.1 Theoretical basis of our approach

Table 4.2 summarizes feature commonalities for Figure 4.1. For instance, looking at Equa-

tion 4.1 it can be checked that feature f3 is included in 5 of the 6 valid products, so its

commonality is 5
6

.

Feature f1 f2 f3 f4 f5 f6

Pr( f ) 1 0 5
6

1
6

1
3

1
3

Table 4.2: Feature commonalities for Figure 4.1

Let sensitivity be a number between 0 and 1. The measures this section deals with can be

redefined as follows.

Definition 6 A feature f is core or dead under sensitivity α iif Equation 4.7 or 4.8 holds,

respectively.

Pr( f ) ≥ (1 − α) (4.7)

Pr( f ) ≤ α (4.8)

For example, under sensitivity 0.2, f3 is considered core (i.e., 5
6
≥ 1 − 0.2), and f4 dead

(i.e., 1
6
≤ 0.2).

Definition 7 The commonality Pr( f | f ′) of a feature f conditioned to another feature f ′ is

calculated as:

Pr( f ) =
#P f , f ′

#P f ′

where P f , f ′ denote the set all of valid products that include f and f ′. And P f denote the set

all of valid products that include f ′.
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For instance, from all the products summarized by Table 4.1, only the following two

include f5: P4 and P6. As just one of them includes f6 (P6), Pr( f6| f5) = 1
2
.

Definition 8 The impact set of a feature f under sensitivity α is composed of all the features

f ′ that require f to be enabled whenever they are included in at least 1 − α of the products,

i.e,

Impact Setα( f ) = { f ′ · Pr( f | f ′) ≥ (1 − α)}

Table 4.3 summarizes the conditional commonalities for all features in Figure 4.1. Let

us suppose sensitivity is 0.2, then the impact set of f3 is { f1, f3, f4, f5, f6} (i.e., those features

whose rows are ≥ 0.8 in column f3).

Commonality of

f1 f2 f3 f4 f5 f6

Conditioned to

f1 1 0 5
6

1
6

1
3

1
3

f2 0 0 0 0 0 0

f3 1 0 1 1
5

2
5

2
5

f4 1 0 1 1 0 0

f5 1 0 1 0 1 1
2

f6 1 0 1 0 1
2

1

Table 4.3: Feature conditional commonalities for Figure 4.1

Definition 9 The exclusion set of a feature f under sensitivity α is composed of all the

features f ′ that are required to be disabled in at least 1 − α of the derivatives that include f ,

i.e.,

Exclusion Setα( f ) = { f ′ · Pr( f ′| f ) ≤ α}

For example, according to Table 4.3, the exclusion set of f3 with sensitivity 0.2 is { f2, f4}

(i.e., those features whose columns are ≤ 0.2 in row f3).

Note that Definitions 6, 8, and 9 coincide with the rigid ones given in Sections 3.2.2 and

3.2.3 for the extreme case when sensitivity is 0.

4.4.2 Algorithms to Detect Core & Dead Features and to Compute Im-

pact & Exclusion Feature Sets

Our approach uses the algorithm 7 that computes the feature commonalities of a variability

model encoded as a BDD, presented in Section 4.1.2. Using that algorithm:
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1. The identification of all core and dead features in a variability model considering a

given sensitivity is performed by Algorithm 14.

2. The impact and exclusion sets of all features in a variability model considering a given

sensitivity is computed by Algorithm 15.

Algorithm 14: get core and dead features (flexible apch.)

1 Input boolean formula ψ; var ordering: array[0..n-1] of string; sensitivity ∈ [0, 1]

2 Output two lists including all core and dead features

3 var core features, dead features: list; i: int;

4 begin

5 core features = {}

6 dead features = {}

7 bdd = get bdd(ψ, var ordering)

8 feature probabilities = get prob(bdd, var ordering)

9 i = 0

10 while i < length(var ordering) do

11 if feature probabilities[i] ≥ (1 − sensitivity) then

12 core features.insert(var ordering[i])

13 else if feature probabilities[i] ≤ sensitivity then

14 dead features.insert(var ordering[i])

15 i += 1

16 return core features, dead features
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Algorithm 15: get impact and exclusion sets (flexible apch.)

1 Input boolean formula ψ; var ordering: array[0..n-1] of string; sensitivity ∈ [0, 1]

2 Output two hash tables including for each feature its impact and exclusion sets

3 var impact sets, exclusion sets: hash; i, j: int;

4 begin

5 impact sets = Hash.new

6 exclusion sets = Hash.new

7 i = 0

8 while i < length(var ordering) do

9 impact sets[var ordering[i]] = {}

10 exclusion sets[var ordering[i]] = {}

11 bdd = get bdd(ψ ∧ var ordering[i], var ordering)

12 feature probabilities = get prob(bdd, var ordering)

13 j = 0

14 while j < length(var ordering) do

15 if feature probabilities[ j] ≥ (1 − sensitivity) then

16 impact sets[var ordering[ j]].insert(var ordering[i])

17 if feature probabilities[ j] ≤ sensitivity then

18 exclusion sets[var ordering[i]].insert(var ordering[ j])

19 j += 1

20 i += 1

21 return impact sets, exclusion sets
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4.5 Computational cost

This section summarizes the computational cost of our approaches w.r.t the related work.

Let us analyze the time complexity of Algorithm 7. Remember that this algorithm computes

feature commonalities by calling Algorithms 8 and 9. Let m be the number of nodes of the

BDD, and n the number of variables of the boolean formula. Algorithm 8 requires traversing

all the nodes, so its computational complexity is O(m). Algorithm 9 also traverses all the

BDD nodes. In addition, to account for the implicit paths removed from the reduced BDD,

the variables omitted on the edges that come from each node need to be traversed (which is

done by lines 24-31). Table 4.4 summarizes those traversals for Figure 4.2. For instance,

when v5 is recursively traversed, the variables f5 and f6 need to be iteratively traversed be-

cause the edge v5 d 1 omits them (i.e., the variable encoded by node v5, f4, jumps directly to

1 omitting the intermediate variables f5 and f6 in the ordering f1 ≺ f2 ≺ f3 ≺ f4 ≺ f5 ≺ f6).

Table 4.4 helps noticing the savings our algorithm provides compared to the straightforward

approach (Algorithms 2 and 5), which requires traversing all nodes for all variables (which

in computational cost terms is equivalent to traversing all variables for every node). There-

fore, Algorithm 9 does not traverse mn elements, but mn′, where n′ is strictly less than n. If

n′ = n, all nodes in the BDD should go directly to 0 or 1, jumping over all the variables.

Nevertheless, as BDDs are organized in hierarchical levels according to the variable order-

ing, this is impossible (i.e., the nodes that encode a variable with position k in the ordering

only can jump over the variables with positions k + 1 . . . n).

Likewise, our approach to compute core and dead features has the same time complexity

as Algorithm 7, i.e., O(mn′). The difference between them is that Algorithm 7 requires MPA

calculations whereas Algorithm 10 woks on boolean variables.

On the other hand, as our approach to compute impact and exclusion sets calls algorithm

10 n times, its time complexity is O(mn′n).

Finally, we are going to review the time complexity of our approaches to compute core/dead

features and impact/exclusion sets under under sensitivity α. It follows that Algorithm 7 has

computational complexity O(mn′), and thus, Algorithms 14 and 15 have complexity O(mn′)

and O(mn′n), respectively.

Table 4.8 summarizes the complexities for Algorithms 2, 5, 3, 14, and 15. Our approach

has the best time complexity. Nevertheless, computational complexity O only provides an

upper bound on the worst time required by the algorithms. As it will be empirically shown
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node arcs omitted vars

that are traversed

v8

v8 d 0 − terminal none

v8 → v7 none

v7

v7 d v6 none

v7 → 0 − terminal none

v6

v6 d v4 none

v6 → v5 none

v5

v5 d 1 − terminal f5 , f6

v5 → v3 none

v4

v4 d v3 none

v4 → v2 none

v3

v3 d v2 none

v3 → 0 − terminal none

v2

v2 d 1 − terminal none

v2 → 0 − terminal none

Table 4.4: Variables iteratively traversed for BBD in Figure 4.2

Commonality features

sat count apch. Our apch.

(Alg. 1) (Alg. 7)

O(m.n) O(m.n′)

where n′ < n

Table 4.5: Time complexity comparison of Algorithms 1 and 7.

Core & dead features

Strainghtforward apch. Lesla et al.’s apch. Commonality apch. Our apch.

(Alg. 2) (Alg. 3) (Alg. 4) (Alg. 10)

O(m.n) O(m.n) O(m.n) O(m.n′)

where n′ < n

Table 4.6: Time complexity comparison of Algorithms 2, 3, 4 and 10.

Impact & exclusion sets

Strainghtforward apch. Boender’s apch Our appch.

(Alg. 5) (Alg. 6) (Alg. 13)

O(m.n2) O(m.n2) m.n.n′

where n′ < n

Table 4.7: Time complexity comparison of Algorithms 5, 6 and 13.
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in Section 6.2, in practice our approach is also the fastest for all the evaluated cases. In

particular:

1. Algorithms 2 and 5 run always on the worst case, i.e., they require traversing mn and

mn2 for all variability models, respectively.

2. Thanks to its lines 18 and 22, Algorithm 3 saves a number of iterations, requiring in

practice mnn′′ steps where n′′ is usually < n.

3. Algorithm 15 requires mnn′ iterations and, on average requires less time than Al-

gorithm 3, i.e., n′ ≪ n′′.

Core & dead features Impact & exclusion sets

Strainghtforward apch. Flexible apch. Strainghtforward apch. Boender’s apch. Flexible apch.

(Algorithm 2) (Algorithm 14) (Algorithm 5) (Algorithm 3) (Algorithm 15)

O(mn) O(mn′) O(mn2) O(mn′n)

where n′ < n where n′ < n

Table 4.8: Time complexity comparison of rigid vs flexible measures.

To sum up, all of our approaches have better time complexity than related work. In

addition, our measure flexibilization not only is more time-efficient than related work but

also provides new functionality (i.e., it can take into account different levels of sensitivity).
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CHAPTER

5
Product Derivation

This chapter presents our heuristic to minimize the number of steps required to derive a

product from a variability model. Section 5.1 introduces the theoretical background of our

approach. As we will see, our heuristic, in the same way that the other heuristics summarized

in Section 3.3, requires computing features commonalities in a variability model. Section

3.2.1 discussed the scalability limitations of the approach commonly used to compute those

probabilities. To overcome such limitations, we used the algorithm 7 proposed in Section

4.1.2, that provides an efficient commonality computation. After reviewing the foundations

of our approach, Section 5.2 describes our heuristic in detail.

5.1 Information Theory

The following definitions were originally introduced by Shannon [Sha48]. Let us start with

the concept of entropy.

Definition 10 Let X be a discrete random variable with alphabet X and probability mass

function Pr(x) = Pr{X = x}, x ∈ X; the entropy H of X is defined by Equation 5.1:

H(X) = −
∑

x∈X

Pr(x)
(

log2Pr(x)
)

(5.1)
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5. PRODUCT DERIVATION

Let us present the concept of conditional entropy, which is the entropy of a random

variable conditional on the knowledge of another random variable.

Definition 11 Let X and Y be two discrete random variables. The conditional entropy

H(X|Y) of X given Y is defined by Equation 5.2:

H(X|Y) =
∑

y∈Y

Pr(y)H(X|Y = y) (5.2)

Finally, let us introduce the concept of mutual information, also called information gain,

which represents the reduction in a variable uncertainty due to another random variable.

Definition 12 Consider two random variables X and Y with a joint probability mass function

Pr(x, y) and marginal probability mass functions Pr(x) and Pr(y). The mutual information

I(X; Y) is defined by Equation 5.3 as the relative entropy between the joint distribution and

the product distribution Pr(x)Pr(y):

I(X; Y) =
∑

x,y

Pr(x, y)log2

Pr(x, y)

Pr(x)Pr(y)
(5.3)

Entropy and mutual information satisfy the following properties that will be used through-

out this chapter:

1. H(X) ≥ 0

2. H(X) ≤ log2#X, with equality if and only if X is distributed uniformly over X (the

number of elements of a set S is denoted as #S )

3. I(X; Y) = H(X) − H(X|Y) = H(Y) − H(Y |X) = I(Y; X)

5.2 Entropy driven configuration

Let us return to the original problem this chapter tackles. Given a set of questions Q, our goal

is to sort it in such a way that the user has to answer as few questions as possible to complete

the desired product. To find the optimal order of Q, we propose to rank each question q

according to its expected information gain, i. e., measuring how much uncertainty can be

reduced on average when the engineer answers it. Such information gain is modeled as the
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5.2 Entropy driven configuration

mutual information I(F; q), where F is the set of all valid products (i. e., the ones that satisfy

all feature interdependencies).

When a product is completely configured, the entropy of every question q is zero. Since

q has been answered, H(q|F) = 0. Thus, it follows that I(F; q) = H(q), as Equation 5.4

demonstrates (see Property 3 in Section 5.1).

I(F; q) = H(q) − H(q|F) = H(q) (5.4)

When we ask “is feature f in the configuration?”, the entropy of the question H(q) is

computed by Equation 5.5, where Pr( f ) is the probability that f is included in the product.

H(q) = −Pr( f )log2Pr( f ) − Pr(¬ f )log2Pr(¬ f )

= −Pr( f )log2Pr( f ) −
(

1 − Pr( f )
)

log2

(

1 − Pr( f )
)

(5.5)

Our approach to guide the derivation of a product may be thought of as a binary search

for the user desired product (in this point it is important to remember Heuristic 6 presented

in Section 3.3). To successively divide the search space into subspaces of approximately

the same size (i. e., where the pursued product is approximately with the same probability),

the user answers the question that provides the most information about the product (i. e.,

the question with highest entropy). Thus, the derivation process advances iteratively, by

performing the following activities, until the entropy of all features becomes zero:

1. Computing the feature probabilities from the input variability model. As the process

advances, the derivation space gets narrower and, consequently, the feature probabili-

ties change.

2. Computing the entropy value for each question.

3. Sorting the questions in descending order of entropy.

4. Asking the user for answering a question with entropy greater than zero. Note than

when a question has zero entropy, it is because it has been answered in a previous step

directly or indirectly (i. e., because of the question interdependencies).

5. Updating the set of answers and the variability model. Note that the customer answer

may be ”yes“ or ”no“. Therefore, the boolean formula ψ that encodes the variability

model has to be updated to ψ ∧ f or ψ ∧ ¬ f , respectively.
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5. PRODUCT DERIVATION

Entropy may also be used to measure how hard it is to derive a given model. From the

“point of view” of an automated configurator, when the derivation process starts, the product

desired by the customer is any f in F with the same probability. So the variability model

uncertainty is calculated by Equation 5.6 (see Property 2 in Section 5.1).

H(F) = log2#F (5.6)

5.2.1 Example

Coming back to the running example introduced in Section 2.1, let us see how our approach

works.

f1 f2 f3

f4 f5 f6

Figure 5.1: A variability model example (rep. Figure 2.1).

Valid Products

1 f1, ¬ f2, ¬ f3, ¬ f4, ¬ f5, ¬ f6

2 f1, ¬ f2, f3, ¬ f4, ¬ f5, ¬ f6

3 f1, ¬ f2, f3, f4, ¬ f5, ¬ f6

4 f1, ¬ f2, f3, ¬ f4, f5, ¬ f6

5 f1, ¬ f2, f3, ¬ f4, ¬ f5, f6

6 f1, ¬ f2, f3, ¬ f4, f5, f6

Table 5.1: Valid products for Figure 5.1 (rep. Table 2.1).

Figures 5.2, 5.3 and 5.4 sum up the steps required to derive the product P1={ f1 , f3 , f5 ,

f6} using the entropy heuristic. In particular, these figures show the entropy and probability

values for each feature in each step required to derive the product P1. In the first step (Figure

5.2), f5 and f6 are the features with highest entropy. So, the system asks the user if f6 is
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5.2 Entropy driven configuration

included in the product. Once the user answers affirmatively, the probabilities of the features

are recomputed and so the entropies (e.g., the inclusion of f6 implies the exclusion of f4, so

Pr( f4)=0 and thus H( f4)=0). Finally, the system asks the user if f5 is included in the product.

Once the user answers affirmatively, the derivation process is completed as Figure 5.4 shows.

f1

Pr( f1) = 1.00

H( f1) = 0.00

f2

Pr( f2) = 0.00

H( f2) = 0.00

f3

Pr( f3) = 1.00

H( f3) = 0.00

f4

Pr( f4) = 0.16

H( f4) = 0.65

f5

Pr( f5) = 0.33

H( f5) = 0.92

f6

Pr( f6) = 0.33

H( f6) = 0.92

Figure 5.2: Deriving product P1={ f1 , f3 , f5 , f6} using feature entropy. Step 0.
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f1

Pr( f1) = 1.00

H( f1) = 0.00

f2

Pr( f2) = 0.00

H( f2) = 0.00

f3

Pr( f3) = 1.00

H( f3) = 0.00

f4

Pr( f4) = 0.00

H( f4) = 0.00

f5

Pr( f5) = 0.50

H( f5) = 1.00

f6

Pr( f6) = 0.00

H( f6) = 0.00

Figure 5.3: Deriving product P1={ f1 , f3 , f5 , f6} using feature entropy. Step 1.

f1

Pr( f1) = 1.00

H( f1) = 0.00

f2

Pr( f2) = 0.00

H( f2) = 0.00

f3

Pr( f3) = 1.00

H( f3) = 0.00

f4

Pr( f4) = 0.00

H( f4) = 0.00

f5

Pr( f5) = 1.00

H( f5) = 0.00

f6

Pr( f6) = 1.00

H( f6) = 0.00

Figure 5.4: Deriving product P1={ f1 , f3 , f5 , f6} using feature entropy. Step 2.
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5.2 Entropy driven configuration

We remark here that our approach does not force the user to follow a fixed sequence of

questions. In each configuration step, the user may decide not to answer the best entropy-

ranked question, but the one she thinks is more convenient. After the question is answered,

the entropies are recomputed and thus our approach adjusted accordingly to the user prefer-

ences in an interactive way.
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CHAPTER

6
Experimental evaluation

In this chapter, the results of several empirical experiments carried out to test the validity

of our approaches are reported. As we have shown in Section 4.5, all of our approaches

present better time complexity than related work. So, in this chapter, our main goals are to

experimentally check if: they are faster than others in practice, i.e., they have better time

performance on real variability models, the measure flexibilization proposed really helps to

detect essential, dispensable and highly incompatible features. Also, our heuristic for user

guidance requires less steps to derive a valid product w.r.t the related work. In particular,

Section 6.1 reports the results of comparing our algorithms for computing the rigid measures

to traditional ones. Section 6.2 provides empirical evidence of the usefulness of our measure

redefinition. This chapter is concluded by summarizing the results of our heuristic for user

guidance in Section 6.3.

6.1 Measures to Identify Absolutely Essential and Dispens-

able Features

This section reports the time-performance comparison of our approach with respect to Tartler.’s

[Tar13] and Lesta et al.’s [LSW15] procedures.
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6.1.1 Experimental design

Table 6.1 summarizes the benchmark used to validate our approach. Variability models

m1 −m10 come from the SPLOT repository1, models m11 −m14 come from She et al. [She13,

BRN+13], and models m15 − m19 come from Bak [Bak13], being m16 − m19 randomly gen-

erated. All tests were conducted on an Intel c© CoreTM i7-3537v 2.00 GHz with 8GB RAM

(although only one core was used). To improve the accuracy of the experimental results,

we tried to minimize the operating system interference in the tests (e.g., due to interrupts to

update internal OS kernel clock, automated task management and planing, memory garbage-

collection, etc.) by repeating each experiment 50 times.

Table 6.1: Summary of the experimental results

Variability Model Time-performance (in seconds)

id. Name #features Tartler. [Tar13] Lesta et al. [LSW15] Our apch.

SAT BDD SAT BDD

m1 Billing 88 0.02175 0.00143 0.01010 0.00070 0.00001

m2 Coche 94 0.09131 0.00451 0.05008 0.00200 0.00002

ecologico

m3 UP 97 0.08387 0.00321 0.05020 0.00170 0.00002

estructural

m4 Xtext 137 0.07575 0.00513 0.04062 0.00270 0.00003

m5 Battle 144 0.18828 0.00786 0.09803 0.00390 0.00003

of tanks

m6 FM Test 168 0.17512 0.01769 0.10501 0.00850 0.00009

m7 Printers 172 0.12809 0.01177 0.06800 0.00510 0.00006

m8 Banking 176 0.19442 0.00921 0.09802 0.00530 0.00005

software

m9 eShop 290 0.47985 0.04139 0.23400 0.02013 0.00031

m10 EIS 366 0.74156 0.06534 0.44803 0.03404 0.00210

m11 axTLS 108 0.07135 0.00228 0.03840 0.00121 0.00015

m12 Fiasco 171 0.14856 0.00517 0.07864 0.00252 0.00024

m13 uClibc 369 3.84395 0.42035 1.83082 0.18740 0.01362

m14 BusyBox 881 10.04722 0.99665 4.93475 0.53460 0.04274

m15 Android 88 0.79197 0.08849 0.38050 0.04031 0.00232

m16 FM-500-50-1 500 27.70023 5.23822 14.42221 2.24335 0.18439

m17 FM-1000-100-2 1000 70.11689 16.68317 37.82924 9.02403 0.29285

m18 FM-2000-200-3 2000 325.68394 78.73022 175.9050 42.35382 2.80637

m19 FM-5000-500-4 5000 1976.10194 406.55513 874.46547 226.93796 7.73044

Our algorithm was implemented as an extension of the BDD library BuDDy2. As the im-

1http://www.splot-research.org/
2http://buddy.sourceforge.net/manual/main.html
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6.1 Measures to Identify Absolutely Essential and Dispensable Features

plementation of alternative approaches to ours relies on SAT-technology, just comparing the

performance of our algorithm to that implementation could skew the experimental validation

to a SAT versus BDD contest. To overcome this problem, we also evaluated the perform-

ance of a BDD implementation of related work as well. In particular, Tartler.’s and Lesta

et al.’s approaches were implemented with the SAT-solver minisat1 and BuDDy. Finally,

the orderings of the variables for all BDDs were computed using the heuristic proposed by

Narodytska et al. [NW07].

The implementation of our algorithm and the benchmark used to validate its performance

are available at:

http://hperez30.github.io/CoreAndDeadFeatures/

6.1.2 Experimental results

Table 6.1 and Figure 6.1 summarize the results of the conducted experimental evaluation.

Note that, as each test was run 50 times, both the table and the figure show averaged data.
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Figure 6.1: Graphical representation of the experimental results

According to the results, our approach outperforms related work in every variability

model, being its benefits more apparent as models are larger. In addition, it should be noted

that the BDD implementation of related work runs faster than the SAT implementation.

1http://minisat.se/
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6. EXPERIMENTAL EVALUATION

6.2 Measures to Identify Essential Dispensable and Highly

Incompatible Features

This section reports the results of several empirical experiments carried out to test the validity

of our approach. In particular, the goal of this section is twofold: to check if our approach is

faster than others (i.e., if our approach has better time performance on real variability models

in practice), and if the measure flexibilization is useful on real variability models.

6.2.1 Experimental design

The time performance of our approach and related work have been evaluated on a benchmark

composed the following models:

1. A configuration model provided by the car manufacturing company Renault DVI,

which deals with the configuration of a family of cars named Renault Megane. The

model is written in the Configit language and can be downloaded from:

http://www.itu.dk/research/cla/externals/clib/

2. A configuration model for laptops, which was reverse engineered from the DELL

homepage on February 2009 by Nöhrer [NE11, NBE12, NE13]. The model is spe-

cified as a decision model and can be downloaded from the C2O website:

http://www.sea.jku.at/tools/c2o

3. All feature models from the SPLOT repository including more than 100 features:

Xtext, Battle of Tanks, FM Test, Printers, Banking Software, Electronic Shopping,

and a Model for Decision-making for Investments on Enterprise Information Systems.

All tests were conducted on an Intel c© CoreTM 2 i3-4010U with 1.7 GHz and 4GB RAM

(although only one core was used). To improve the accuracy of the experimental results,

we tried to minimize the operating system interference in the tests (e.g., due to interrupts to

update internal OS kernel clock, automated task management and planing, memory garbage-

collection, etc.) by repeating each experiment 50 times.

To support the reliable comparison of the algorithms described in Sections 3.2.2 and 4.4,

all of them have been implemented extending the BuDDy package for BDDs.
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6.2 Measures to Identify Essential Dispensable and Highly Incompatible Features

6.2.2 Time Performance

Table 6.2 summarizes the results of the performance tests. As we can seen, our approach

(Algorithms 14 and 15 parameterized with sensitivity = 0) outperforms related work (Al-

gorithms 2, 5, and 3) in all the experiments.

Variability Number of Dead & core features Impact & exclusion sets

model features Alg. 2 Alg. 14 Alg. 5 Alg. 3 Alg. 15

Renault 398 5.07081 3.80750 823.38893 764.03980 587.12394

Dell 123 0.04938 0.03310 1.38710 1.31957 0.88028

Xtext 137 0.05547 0.00185 1.41291 1.67129 0.20609

Battle of Tanks 144 0.11169 0.00200 2.81473 2.59596 0.21417

FM Test 168 0.12117 0.04005 6.52654 6.67389 1.72019

Printers 172 0.12962 0.00271 2.53492 2.90606 0.21415

Banking Software 176 0.15372 0.00397 3.69472 5.16730 0.32365

Electronic Shopping 290 1.18944 0.37749 276.89974 224.35847 98.18766

Investments on 366 17.86456 4.50573 6,002.73245 5,120.10355 952.13433

Enterprise

Information

Systems

Table 6.2: Performance in seconds of rigid and flexible measures

It is worth noting that Boender’s shortcut to compute the impact and exclusion sets (Al-

gorithm 3) is not always faster than the straightforward approach (Algorithm 5). Thus, in

some cases the extra cost required due to the sat one call in line 9 of Algorithm 3 does

not payoff. In particular, it is slightly slower for the following SPLOT test cases: Xtext, FM

Test, Printers, and Banking Software.

6.2.3 Benefits of Measure Sensitivity

The Renault Megane model is a benchmark widely used by the mass customization com-

munity (e.g., [AFM02] [Jen04] [OOF05] [HHOW05] [NW07] [HT07] [CO08] [Que11]

[Kro12] [Gan12] [BFL13]). To the extent of our knowledge no author has reported dis-

pensable nor highly incompatible features for the model. Nevertheless, the model includes 6

dead features, i.e., the 1.51% of the features cannot be included in any product.

If sensitivity is taken into account and so feature probabilities are computed, the percep-

tion of feature reusability changes dramatically. Figure 6.2 shows the histogram of feature

probabilities. According to such figure, 53.27% of the features are dead at sensitivity 0.05
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(see the first bar). In other words, more than half of the features can be reused at most in just

5% of the valid products!
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Figure 6.2: Histogram of feature probabilities for the Reanult Megane example

Figure 6.3 shows how the number of incompatible feature grows drastically with a small

sensitivity increase. According to the rigid version of feature incompatibility, there are 33

features incompatible with at least 50% of the remaining ones (8.29% of the features). When

sensitivity is set to 0.5, that number becomes 380 (95.48% of the features).

Table 6.3 summarizes the aforementioned outcomes, highlighting the benefits of using

our flexible approach.

Rigid Measures (sensitivity=0) Flexible Measures (sensitivity=0.05)

Dead features 1.51% 53.27% Features with reuse probability ≤ 0.05

Core features 1.76% 10.55% Features with reuse probability ≥ 0.95

Features incompatible 8.29% 95.48% Features incompatible in 95% of

with more than 50% the valid products with more

of the remaining features than 50% of the remaining features

Table 6.3: Comparison of rigid versus flexible outcomes for the Reanult Megane example
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Figure 6.3: Histogram of feature incompatibilities for the Reanult Megane example

6.3 Our approach for user guidance

This section reports the results of several empirical experiments carried out to test the validity

of our approach for user guidance. In particular, the goal of this section is to check if:

• Our approach produces better results than related work.

• The algorithm presented in Section 4.1.2 provides reasonable response times and thus

support customer interactivity during the derivation process.

6.3.1 Experimental design

To test the validity of our approach, the following two case studies have been used:

1. The variability model provided by the car manufacturing company Renault DVI, presen-

ted in previous sections. This model has been selected because it illustrates the prac-

tical applicability of our approach (i.e., instead of using an example made up for aca-

demic purposes, our work is tested on a real configuration model that comes from the

industry).
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2. The Electronic Shopping model provided by Lau [Lau06], which deals with an elec-

tronic commerce platform that allows consumers to directly buy goods or services

from a seller over the Internet using a web browser. This benchmark is widely used by

the software product line community [Men09] [BG11] [POS+12].

On the other hand, we have created a test bed composed of 1000 random products for

every variability model. As we will see, a sample of 1000 products is big enough to get

results with high statistical power and significance.

To get efficient BDD sizes, the directions given by Narodytska et al. [NW07] have been

followed. The BuDDy package has been used to guarantee the generation of valid products

(i.e., derivatives that conform to the BDD).

The test bed is used to compare the following methods:

1. Mazo et al.’s Heuristics 1, 2 and 51.

2. Probability driven approach, i.e., the method proposed by Chen et al. and Mazo et al.

(Heuristic 3).

3. Entropy driven approach, i.e., the method we propose in Chapter 5.

To compute the feature probabilities, which are required by the entropy and probability

approaches, an implementation of the algorithm presented in Section 4.1 has been developed

as an extension of the BuDDy package. All tests were conducted on an Intel c© CoreTM 2

i3-4010U with 1.7 GHz and 4GB RAM (although only one core was used).

6.3.2 Case study 1: Renault Megane

6.3.2.1 Results

Table 6.4 summarizes the results of the experiments for the Renault Megane variability

model. Histograms in Figure 6.4.a represent the number of steps needed to derive the

1000 products using Mazo et al.’s Heuristics 1, 2 and 5, and the entropy and probability

1remember that, strictly speaking, Mazo et al.’s Heuristic 4 is not a heuristic, but a propagation mechanism

that all derivation systems should support. So we have included such mechanism in all the methods tested in

this Section.
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approaches. Figure 6.4.b complements the histogram representation of the results with a box

plot1.

approach mean std. deviation median min max range

entropy 73.49 9.5 73 50 97 47

probability 105.79 11.54 106 56 137 81

Heuristic 1 86.04 11.26 86 53 118 65

Heuristic 2 82.74 11.12 83 51 114 63

Heuristic 5 99.39 15.95 100 52 143 91

Table 6.4: Results for the Renault Megane example
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Figure 6.4: Number of derivation steps according to the used approach for the Renault Megane

example

Using the Central Limit Theorem, the 95% Confidence Intervals (CI) of the population

mean can be estimated (i.e., the range where, with a 95% guarantee, the mean of the number

of steps required to derive every product of the Megane model lies). Table 6.5 summarizes

1“whiskers” in Figure 6.4.b start from the edge of the box and extend to the furthest data point that is within

1.5 times the inter-quartile range (i.e., the range that goes from the 25th percentile to the 75th percentile). Points

that are past the ends of the whiskers have been considered outliers and displayed with dots.
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6. EXPERIMENTAL EVALUATION

the CIs for each approach, which are estimated as population mean CI = sample mean ±

t(std. error, 95%, 999 degrees of freedom), where t stands for the Student’s t-distribution.

entropy probability Heuristic 1 Heuristic 2 Heuristic 5

std. error 95% CI std. error 95% CI std. error 95% CI std. error 95% CI std. error 95% CI

0.03 70.90- 0.36 105.07- 0.36 85.35- 0.35 82.05- 0.5 98.40-

74.08 106.50 86.74 83.43 100.38

Table 6.5: 95% CI of the population mean the Renault Megane example

According to the summarized data, there is experimental evidence supporting that our

approach produces better results than related work.

6.3.2.2 Statistical significance

To check the statistical significance of the results, an Analysis of Variance (ANOVA) test has

been run on the experimental data. Table 6.6 summarizes the ANOVA outcomes. Since the

p-value is less than 0.001 (in particular, p-value < 2 · 10−16), the experimental results are

statistically highly significant.

degrees of sum of mean of F-value Pr(> F)

freedom squares squares

approaches 4 676884 169221 1162 < 2 · 10−16

residuals 4995 727312 146

Table 6.6: ANOVA test for the Renault Megane example

Table 6.7 summarizes the power analysis of the ANOVA test. Given the sample size and

the high effect size (i.e., the high values of η2 and Cohen’s f 2), the ANOVA test has high

statistical power.

effect size power

eta squared η2 Cohen’s f 2

0.48 0.93 ≈ 1

Table 6.7: Power analysis for the Renault Megane example

Finally, to check the statistical significance of the pairwise comparison between the ap-

proaches, a Tukey Honest Significant Differences (HSD) has been run. According to the
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results, summarized in Table 6.8, the difference between the number of steps required by

any pair of approaches to derive a product is statistically highly significant1.

difference 95% CI adjusted p-value

Heuristic 2 vs entropy 9.25 7.78-10.72 ≈ 0

Heuristic 1 vs entropy 12.56 11.08-14.02 ≈ 0

Heuristic 5 vs entropy 25.89 24.42-27.37 ≈ 0

probability vs entropy 32.29 30.82-33.77 ≈ 0

Heuristic 1 vs Heuristic 2 3.30 1.83-4.77 ≈ 0

Heuristic 5 vs Heuristic 2 16.65 15.17-18.12 ≈ 0

probability vs Heuristic 2 23.04 21.57-24.52 ≈ 0

Heuristic 5 vs Heuristic 1 13.34 11.87-14.82 ≈ 0

probability vs Heuristic 1 19.74 18.27-21.22 ≈ 0

probability vs Heuristic 5 6.40 4.93-7.87 ≈ 0

Table 6.8: Tukey HSD test for the Renault Megane example

6.3.3 Case study 2: Electronic Shopping

Table 6.9 and Figure 6.5 summarize the results of the experiments for the Electronic Shop-

ping variability model. Table 6.10 summarizes the CIs for each approach. According to

the outcomes, there is experimental evidence supporting that our approach produces better

results than related work.

approach mean std. deviation median min max range

entropy 165.57 2.23 166 158 171 13

probability 193.67 6.06 194 164 207 43

Heuristic 1 187.38 5.69 188 168 201 33

Heuristic 2 189.36 5.7 190 170 203 33

Heuristic 5 169.33 3.1 169 153 178 25

Table 6.9: Results for the Electronic Shopping example

1whereas the ANOVA test rejects the null hypothesis: “there is no difference between the five approaches

(i.e., all of them produce approximately the same results)”, Tukey HSD test rejects ten null hypotheses sep-

arately: “there is no difference between the Heuristic 2 and the entropy approach”, “there is no difference

between Heuristic 1 and the entropy approach, etc.”.
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Figure 6.5: Number of derivation steps according to the used approach for the Electronic Shop-

ping example

entropy probability Heuristic 1 Heuristic 2 Heuristic 5

std. error 95% CI std. error 95% CI std. error 95% CI std. error 95% CI std. error 95% CI

0.07 165.43- 0.19 193.29- 0.18 187.03- 0.18 189.01- 0.1 169.14-

165.71 194.04 187.73 189.72 169.52

Table 6.10: 95% CI of the population mean for the Electronic Shopping example
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6.3.3.1 Statistical significance

Table 6.11 summarizes the ANOVA outcomes. Since the p-value is less than 0.001 (in

particular, p-value < 2 · 10−16), the experimental results are statistically highly significant.

Table 6.12 summarizes the power analysis of the ANOVA test. Given the sample size and the

high effect size, the ANOVA test has high statistical power. Finally, Table 6.13 summarizes

the outcomes of HSD, which show that the difference between the number of steps required

by any pair of approaches to derive a product is statistically highly significant.

degrees of sum of mean of F-value Pr(> F)

freedom squares squares

approaches 4 645314 161328 6950 < 2 · 10−16

residuals 4995 115944 23

Table 6.11: ANOVA test for the Electronic Shopping example

effect size power

eta squared η2 Cohen’s f 2

0.85 5.57 ≈ 1

Table 6.12: Power analysis for the Electronic Shopping example

difference 95% CI adjusted p-value

Heuristic 5 vs entropy 3.76 3.17-4.35 ≈ 0

Heuristic 1 vs entropy 21.81 21.22-22.40 ≈ 0

Heuristic 2 vs entropy 23.79 23.21-24.38 ≈ 0

probability vs entropy 28.09 27.51-28.68 ≈ 0

Heuristic 1 vs Heuristic 5 18.05 17.46-18.64 ≈ 0

Heuristic 2 vs Heuristic 5 20.03 19.45-20.62 ≈ 0

probability vs Heuristic 5 24.33 23.75-24.92 ≈ 0

Heuristic 2 vs Heuristic 1 1.98 1.39-2.57 ≈ 0

probability vs Heuristic 1 6.28 5.69-6.87 ≈ 0

probability vs Heuristic 2 4.30 3.71-4.89 ≈ 0

Table 6.13: Tukey HSD test for the Electronic Shopping example
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6.4 Threats to Validity

The following points summarize the main threats to the validity of our work, and the strategies

we have followed to try to overcome them:

1. Bibliometric analysis. The first one is referred to our bibliometric analysis presented

in Chapter 3, and it is composed of the following main threats:

• Bibliographic database. Although there are several freely available databases,

such as Google Scholar (GS), CiteSeerX, Microsoft Academic Search, getCITED,

etc., the paid subscription databases ISIWoS and Scopus are currently the most

reliable [GJGJMO14, VG09].

By Combining data from ISIWoS and Scopus, we have tried to achieve a good

balance between:

– Retrospective coverage: ISIWoS offers the most complete retrospective qual-

ity coverage for all scientific disciplines, which is specially appropriated for

the rigorous science mapping analysis carried out in this thesis.

– Conference coverage: the scientific community in Computer Science is highly

driven by conferences, which are inadequately covered by ISIWoS. In con-

trast, Scopus includes most of the key conferences in SPLs, such as the Inter-

national Workshop on Variability Modelling of Software-intensive System

(VAMOS).

• Keyword standardization. If the input to the simple centers algorithm included

too many keywords, the output might be hard to interpret: there would be a high

number of clusters, composed of many keywords interrelated with low equival-

ence indices. To overcome this problem, the standardization described in Section

3.1.1 was performed.

• Period setting and parametrization of the simple centers algorithm. To get good

performance in the analysis of co-citation clusters over consecutive periods, a

balanced period length is needed: short enough to prevent smoothing exces-

sively the data and long enough to include sufficient publications for the analysis

[CLHHVH11a]. In our work, we decided to group the publications in periods of
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five years, as [KUU10], and [CLHHVH11a] also do in similar science mapping

analyses.

To ease the review of our work, the records retrieved from ISIWoS, all the raw

keywords included in such records, the standardized keywords, a description on

how keywords were grouped, and the sources where the papers where published

are available on:

http://rheradio.github.io/SPL-Bib-Anlys/

2. BDD encoding. The second thread refers to the starting point of all our approaches:

The synthesis of a BDD for a variability model. Unfortunately, synthesising com-

plex models may be extremely hard because the size of the BDDs highly depends on

the chosen variable ordering [Bry86], and it has been already mentioned throughout

this thesis it is a well-known fact that finding an optimal ordering is an NP-complete

problem [BW96]. It has also been already mentioned that providing a heuristic to

find a good variable ordering is out of the scope of this thesis. Nevertheless, some

heuristics specifically designed to deal with variability models are available. For in-

stance, Mendonça [Men09] proposes a static heuristic for feature models which has

been proven to work efficiently for the models included in the SPLOT repository.

Static heuristics produce a ordering which remains invariable during the whole course

of the BDD construction. It is worth noting that this kind of heuristic sometimes is

not appropriate since the optimal ordering at the end may be different at the begin-

ning of the BDD building [MT98]. In such cases, it is better to improve the variable

ordering dynamically as the BDD is being built. Narodytska et al. [NW07] propose

three heuristics for reducing the time and space required to built a BDD for a vari-

ability model. The first heuristic attempts to limit the growth in the size of the BDD

by providing an ordering in which constraints are added to the decision diagram; the

second heuristic provides an initial ordering for the variables within the decision dia-

gram; and the third heuristic groups variables together so that they can be reordered

by a dynamic variable reordering procedure.

3. Product derivation. A threat to the validity of our approach for guiding the derivation

process is the time required to compute the feature probabilities1. For the sake of

1which is also the Achilles’ heel for Chen et al.’s approach and Mazo et al.’s Heuristic 3.
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interactivity, configurators must provide customer guidance in a short-time and the

usual way to compute the probabilities is highly time-consuming (see Section 3.2.1).

To assess the response time of our algorithm (see Section 4.1), we determined the

time needed to derive 1000 randomly generated products for the case studies 1 and 2

using our entropy-driven approach. Figure 6.6 compares the average times needed to

completely derive the products by computing the feature probabilities using Algorithm

7, and calling repeatedly the BuDDy function satcount, i.e., calling Algorithm 1.

As Figure 6.6 shows, our algorithm greatly improves the probability computation time.

For instance, it requires 4.54 seconds on average to compute all feature probabilities

(and thus their entropy values) for the first configuration step in the Renault Megane

example. In contrast, calling satcount repeatedly consumes 625.18 seconds.
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Figure 6.6: Time required to compute feature probabilities

Note that the first product steps are the most expensive in time. As the derivation

process advances, the derivation space gets reduced and so the time needed to compute

the probabilities. There is a point where both approaches converge and get response

times close to 0.
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CHAPTER

7
Conclusions and Future Work

This chapter sums up the main contributions of this thesis and opens the door for future

research based on the ideas proposed throughout this dissertation. This final chapter is orga-

nised as follows: Section 7.1 provides the concluding remarks of the thesis. Finally, Section

7.2 presents research opportunities based on the ideas proposed in our work.

7.1 Summary

In this dissertation, research on automated analysis of variability models and product derivati-

on in SPLs have been described. The first stage of this thesis was identifying the most in-

teresting and impacting areas of work. To do so, a bibliometric analysis of the literature on

SPLs was carried out. In particular, thanks to science mapping, the main researched topics,

the evolution of the interest in those topics and the relationships among them have been iden-

tified. On the one hand, it has been detected that software architecture was the initial motor

of research in SPLs, and the work on software systematic reuse has also been essential for

the development of the area. On the other hand, feature modeling has been the most impor-

tant topic for the last fifteen years, having the best evolution behaviour in terms of number

of published papers and received citations. In addition, as we pointed out in Chapter 3, the
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automated analysis of variability models and product derivation have gained importance be-

coming two of the most researched topics in the area for the period 2010-2014. As a result,

we decided to work in these research topics.

Automated Analysis

The development and maintenance of SPLs require the management of complex vari-

ability models. The role each feature plays in such models is unclear to the naked eye and

so automated support is needed to identify which features are essential, dispensable, highly

required by other features and highly incompatible with the remaining features. We have ex-

posed the drawbacks of existing approaches to provide that support, and we have shown that

those strategies have poor time performance and so they hinder user interactivity. To over-

come the scalability limitations of related work, we have proposed some algorithms for these

important measures, based on the glass-box reuse of BDD libraries. As we have shown, our

approaches directly interacts with the data structure of the BDD that encodes a variability

model, and thus they exhibit better time-performance than related work, both theoretically

and experimentally. In particular, the experimental validation reported in Chapter 6 reveals

that our approaches provide a relative improvement of approximately 93% w.r.t related work.

Moreover, we have identified that current measures to detect essential, dispensable, highly

required features are too rigid. Due to the rigidness of these measures to account for feature

interrelations, relevant information is frequently overlooked. According to our experimental

validation, the number of dead features for the Renault Megane benchmark is the 1.51%.

Nevertheless, it grows until 53.27 % at sensitivity 0.05. In other words, more than half of

the features can be reused at most in just 5 percent of the valid derivatives. Furthermore, it

has been shown, both theoretically and experimentally, that our algorithms not only can take

into account different levels of sensitivity, but also are more time-efficient than related work

even for computing the rigid measures. In particular, the experimental validation reveals that

our approaches provide a relative improvement of approximately 73% w.r.t related work.

Product Derivation

As already mentioned, the configuration of all but trivial derivatives involves consider-

able effort in selecting which features they should include, while avoiding violations of the

inter- feature dependencies and incompatibilities. Our approach enriches existing automated

configurators by reducing the number of steps required to derive a valid product. Applying
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the Information Theory concept of entropy, our approach takes advantage of the fact that,

due to the inter- features relations, some decisions may be automatically derived from other

decisions previously made. So, the order in which decisions are made has a strong influence

on the number of decisions required to complete a valid product. Moreover, our approach

does not provide a static ordering that the customer is forced to follow. On the contrary,

it suggests orderings dynamically, reacting to the customer decisions. In addition, we have

used the algorithm that efficiently computes the variable probabilities of a boolean formula

introduced in Chapter 4, supporting this way not only our approach but also other methods

proposed in related work.

The Renault Megane and the Electronic Shopping configuration benchmarks have been

used to test the applicability of our approach and its effectiveness. In particular, it has been

shown that our approach produces better results than related work:

• It requires 30.52%, 14.58%, 11.18% and 26.06% less steps than Chen et al.’s approach,

Heuristic 1, Heuristic 2 and Heuristic 5 for the Renault Megane test, respectively.

• It requires 14.51%, 11.64%, 12.56% and 2.60% less steps than Chen et al.’s approach,

Heuristic 1, Heuristic 2 and Heuristic 5 for the Electronic Shopping test, respectively.

7.2 Future Work

In the following points, we discuss about research opportunities to extend the ideas proposed

in this dissertation:

• It is well-known that some products are more demanded by customers than other ones.

However, our heuristic to guide product derivation does not take into account such

information. So, a redefinition of our approach that deals with additional information

available form previously configured products might be developed.

• It is well-known that BDD size strongly depends on BDD ordering heuristic. It would

be convenient to develop an R wrapper for the most popular BDD libraries, i.e, BuDDy

and Cudd1. This implementation would be useful to get and analyze the effects that

different input parameters, such as variable ordering or constraint ordering, have on

the BDD size.

1http://vlsi.colorado.edu/˜fabio/CUDD/
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• As already mentioned, all of our heuristic have been implemented as an extension

of the BuDDy library. However, it would be convenient to implement them in other

popular bdd libraries such as Cudd, javaBdd1, etc in order to seize other ordering

heuristics supported by those libraries.

1http://javabdd.sourceforge.net/
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[NBE12] Alexander Nöhrer, Armin Biere, and Alexander Egyed. Managing sat

inconsistencies with humus. In Proceedings of the Sixth International

Workshop on Variability Modeling of Software-Intensive Systems, Va-

MoS ’12, pages 83–91, New York, NY, USA, 2012. ACM. 88
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Heuer, and Kim Lauenroth. Quality-aware analysis in product line en-

gineering with the orthogonal variability model. Software Quality Con-

trol, (3-4):519–565, September 2012. 30

[RGD10] Rick Rabiser, Paul Grunbacher, and Deepak Dhungana. Requirements

for product derivation support: Results from a systematic literature

review and an expert survey. Information and Software Technology,

(3):324–346, 2010. 30

[RS98] David C Rine and Robert M Sonnemann. Investments in reusable soft-

ware. a study of software reuse investment success factors. Journal of

Systems and Software, (1):17–32, 1998. 26

[RW07] Mark-Oliver Reiser and Matthias Weber. Multi-level feature trees: A

pragmatic approach to managing highly complex product families. Re-

quirements Engineering, (2):57–75, May 2007. 28

[SAH+11] Samaneh Soltani, Mohsen Asadi, Marek Hatala, Dragan Gasevic, and

Ebrahim Bagheri. Automated planning for feature model configuration

based on stakeholders’ business concerns. In 26th International Confer-

ence on Automated Software Engineering, pages 536–539, Washington,

DC, USA, 2011. IEEE Computer Society. 46

[SB99] Mikael Svahnberg and Jan Bosch. Evolution in software product lines:

Two cases. Journal of Software Maintenance, (6):391–422, November

1999. 26

[SB02] Yannis Smaragdakis and Don Batory. Mixin layers: An object-

oriented implementation technique for refinements and collaboration-

based designs. ACM Trans. Softw. Eng. Methodol., (2):215–255, April

2002. 27

[SBDT10] Ina Schaefer, Lorenzo Bettini, Ferruccio Damiani, and Nico Tanzarella.

Delta-oriented programming of software product lines. In Software

Product Line Conference, pages 77–91, Jeju Island, South Korea, 2010.

30

124



BIBLIOGRAPHY

[Sch02] K. Schmid. A comprehensive product line scoping approach and its

validation. In International Conference on Software Engineering, pages

593–603, Orlando, FL, USA, May 2002. 27

[Sha48] C. E. Shannon. A mathematical theory of communication. Bell System

Technical Journal, 27(3):379–423, 1948. 77

[SHBRC11] Sergio Segura, Robert M. Hierons, David Benavides, and Antonio Ruiz-

Cortés. Automated metamorphic testing on the analyses of feature mod-

els. Information and Software Technology, (3):245 – 258, 2011. 30

[She13] Steven She. Feature Model Synthesis. PhD thesis, University of Water-

loo, 2013. 86

[SHN+07] Carsten Sinz, Albert Haag, Nina Narodytska, Toby Walsh, Esther Gelle,

Mihaela Sabin, Ulrich Junker, Barry O’Sullivan, Rick Rabiser, Deepak
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documentation-a key issue in software product lines. Information and

Software Technology, (8):535–546, 2004. 27

127



BIBLIOGRAPHY

[TR91] W.A. Turner and F. Rojouan. Evaluating input/output relationships in

a regional research network using co-word analysis. Scientometrics,

(1):139–154, 1991. 23

[Tse83] Grigori S Tseitin. On the complexity of derivation in propositional cal-

culus. In Automation of reasoning, pages 466–483. Springer, 1983. 12

[UKB10] E. Uzuncaova, S. Khurshid, and D. Batory. Incremental test generation

for software product lines. IEEE Transactions on Software Engineering,

(3):309–322, May 2010. 30

[URG10] Muhammad Irfan Ullah, Gn̈ther Ruhe, and Vahid Garousi. Decision

support for moving from a single product to a product portfolio in

evolving software systems. Journal of Systems and Software, (12):2496

– 2512, 2010. 30

[vDK02] A. van Deursen and P. Klint. Domain-specific language design requires

feature descriptions. Journal of Computing and Information Techno-

logy, 10(1):1–17, 2002. 37, 38

[vdLSR07] Frank J. van der Linden, Klaus Schmid, and Eelco Rommes. Software

Product Lines in Action. The Best Industrial Practice in Product Line

Engineering. 2007. 2

[VG07] Markus Voelter and Iris Groher. Product line implementation using

aspect-oriented and model-driven software development. In Software

Product Line Conference, pages 233–242, Washington, DC, USA, 2007.

28

[VG09] Elizabeth S. Vieira and Josa A.N.F. Gomes. A comparison of scopus

and web of science for a typical university. Scientometrics, (2):587–

600, 2009. 20, 98

[vGBS01] J. van Gurp, J. Bosch, and M. Svahnberg. On the notion of variability in

software product lines. In Working IEEE/IFIP Conference on Software

Architecture, pages 45–54, Amsterdan, Netherlands, August 2001. 27

128



BIBLIOGRAPHY

[vO05] Rob van Ommering. Software reuse in product populations. IEEE

Transactions on Software Engineering, (7):537–550, July 2005. 28

[WBS+10] J. White, D. Benavides, D.C. Schmidt, P. Trinidad, B. Dougherty, and

A. Ruiz-Cortes. Automated diagnosis of feature model configurations.

Journal of Systems and Software, (7):1094–1107, 2010. 30, 46

[WHG+09] J. White, James H. Hill, J. Gray, S. Tambe, A.S. Gokhale, and D.C.

Schmidt. Improving domain-specific language reuse with software

product line techniques. IEEE Software, (4):47–53, July 2009. 28

[ZJY03] Hongyu Zhang, Stan Jarzabek, and Bo Yang. Quality prediction and

assessment for product lines. In International Conference on Advanced

Information Systems Engineering, pages 681–695, Klagenfurt, Austria,

2003. 27

[ZK10] Christoph Zengler and Wolfgang Küchlin. Encoding the linux kernel
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CTCR Cross-Tree Constraint Ratio

CVL Common Variability Language
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FD Features Diagram
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