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Chapter 1 — Nuclear Fusion

This chapter contains a brief introduction to nuclear fusion, with main focus on
magnetically confined controlled thermonuclear reaction. Also, a quick overview
is given on JET- the current flagship fusion experiment and ITER- the

experiment whole world is eagerly waiting to begin operation.

1.1. Introduction

Global environmental crisis has led humankind to search for effective
alternatives to traditional energy sources. What started as a breakthrough with
the invention of wheel, progressively grew with inventions of electricity and
eventually culminated in industrial revolutions- the human evolution has lately
shown the ugly side of overexploitation of natural resources. Repercussions have
been massive and according to reports [1], it is just the beginning. Strides made
in scientific discoveries taught us different ways to produce electricity, but the
primary source has been combustion of fossil fuels. Coal and natural gas, with
their abundance at the time of their discovery and comparatively smaller global
energy demand- had become “traditional” fuels for energy production, dating
thousands of years before the invention of steam engines. Steam engines changed
the face of the earth- figuratively and literally; instigating the industrial
revolution where we built machinery for mass production of utilities.
Construction of heavy machinery resulted in drastic change of human lifestyle.
Animal driven carts were quickly replaced by motorized vehicles. Steam powered
trains and ships which used coal in the boilers became a faster way of
transportation. But even before coal, wood was being used for heating- another
organic material which upon combustion, liberates CO,. The demand and use of
coal, however, shot through the roofs upon realization that the energy liberated
by burning of coal was much higher. Also, the fact that coal was much easier to
transport compared to the wood made it the Materia prima for the industry.

Fast forward to the 19" century and we are at another historical
landmark- the discovery of crude oil. Edwin L Drake, drilling the first modern
commercial oil well accompanied by advances in chemistry to refine the crude oil
in order to obtain useful petroleum products provided a gigantic leap towards
further acceleration of the industrial revolution. Kerosene for lighting lamps and
gasoline for internal combustion engines quickly converted crude oil into a tool

for world dominance, leading to world wars.

1



Global fossil fuel consumption
Global primary energy consumption by fossil fuel source, measured in terawatt-hours (TWh),
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Figure 1.1: Global fossil fuel consumption chart [1]

If put into a general class, all the variety of fossil fuel belong to
hydrocarbons- compounds consisting predominantly carbon and hydrogen and
sometimes nitrogen, oxygen, sulfur. Assuming we have hydrocarbons containing
only carbon and hydrogen, the chemical reaction of their complete combustion

for energy production can be represented by following equation:
3x+1 yields
CxH2x+2 + < )

0, — xC0, + (x + 1) H,0
In case of hydrocarbons with either of nitrogen, oxygen or sulfur, several

other unwanted byproducts are obtained. The liberated carbon dioxide is the
main culprit of the greenhouse effect, trapping the heat in terrestrial atmosphere.
We have named this phenomenon as global warming and even though, it is a
little too late, there is a general consensus about the adverse effects of it. From
as basic as melting of glaciers and rising sea levels to frequent wildfires and long
draughts are some examples of consequences of global warming. Projections for
future global temperature for different scenarios of CO, emission are alarming
and we need to cut down drastically on our fossil fuel consumption in order to

salvage the environment and the planet.
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Annual carbon dioxide {CO;) emissions from different fuel types, measured in tonnes per year.
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Figure 1.2: Global CO, emissions by fuel type [1]

The advent of atomic energy has played a very important role in keeping
the CO, emissions in check. However, another problem, that of radioactive
nuclear waste with a half-life time of tens of thousands of years and accidents
like Chernobyl and Fukushima have rendered the comparatively better option of
nuclear energy rather questionable. So much so, that several European countries
like Germany, Italy, Spain and many more have decided to shut down their
nuclear power plants [2] and opt for renewables like solar, wind and thermal
energy. Traditional nuclear power plants use nuclear fission of Uranium 235 for
energy production. However, up until recent decade, where modern modular
reactors have been developed, the efficiency of the fuel cycle was quite low, which
led to large amounts of fission fuel going to “waste”. A recent study made by
researchers of Stanford and University of British Columbia [3] has pointed out
that even the small modular reactors, which are projected as a cleaner and more
efficient alternative of the first generation reactors, will actually generate more
radioactive waste than the conventional nuclear power plants. Fission is not the
only pathway to nuclear energy. It is actually the least used form of nuclear
energy on the universal scale. The cleaner and more abundant source of nuclear
energy is Nuclear Fusion. Fusion per se does not produce radioactive residuals
because it uses light atoms (mostly isotopes of Hydrogen and Helium) as fuels,

which are available in abundance.



All the stars in the universe produce their energy via the nuclear fusion
reaction. While in fission we break a heavy nucleus into several lighter ones to
produce energy based on the mass defect, fusion combines two light nuclei to
produce a heavier one and the resultant mass defect, can be harnessed to generate

electricity using the famous Einstein equation:
E = Amc?

where Am is the mass defect, c is the speed of light and E is the resultant energy.

Nuclear fusion in stars is made possible due to the gravitational
confinement of matter. If stars were to be put into a single category based on
what they are comprised of, that category could easily be termed as “Giant
gaseous balls”. These gaseous balls are very densely packed. The sun, which by
no means is a “GIANT” in astrophysical terms, has a density of approximately
150 g/cm?® [4] in the core- which is almost 10 times the density of gold. In such
high-density region, the temperature also starts rising due to the collisions among
Hydrogen gas molecules. As of today, the solar core is estimated to have a
temperature of 15 million K. At these temperatures, all the visible matter gets
converted to the 4" state- plasma. Plasma is a state of matter where due to high
temperatures, almost all the atoms are stripped off their electrons and what
remains is a very hot mix of electrons, ions and some neutral atoms and
molecules. The nuclei, upon having such high energies, can overcome what is
known as the Coulomb barrier and repulsion caused by the Coulomb force
between like charges and end up going through the fusion reaction, where they

combine to produce new nuclei.

The most important chain reaction responsible for energy production in
solar core is known as the proton-proton chain reaction where four Hydrogen
nuclei form a Helium nucleus. It is not a straightforward reaction, rather it occurs

in stages.
IH+1H - 2D+ et +u,
D+ IH - 3He+ y
SHe + 3He > 3jHe + 1H + iH
the total energy released at the end of the above cycle is 26.7 MeV. Once

initiated, the reaction is self-sufficient if not all the Hydrogen in the core is

converted into Helium. Abundant amounts of Hydrogen in core of stars would



mean that it might even take billions of years to use up all the Hydrogen. In
stars, the massive gravitational force owing to their mass takes care of confining
the plasma so that the proton-proton cycle continues occurring non-stop. Hence,
in case of stars, the gravity not only plays a major part in igniting nuclear fusion
but also, in maintaining it continuous by means of gravitational confinement.
It is, however, unrealistic for the moment to be able to produce and maintain
such high-density levels of a gas on earth. Worth mentioning is the fact that the
first ever occurrence of fusion of two protons into a deuteron is so rare that the
characteristic time for it at the extremely high temperatures and densities of the
solar core is still a billion years. Mankind has therefore sought to use various
methods to harness nuclear fusion for energy production on planet Earth.
Inertial confinement and magnetic confinement are the other two methods

being investigated into for exploitation of nuclear fusion as a source of energy.

For inertial confinement fusion, the fuel nuclei are located in form of a
capsule inside a hohlraum- a German word for cavity. Intense laser beams are
used to irradiate the fuel capsule, resulting in intense x-rays produced by the
hohlraum, causing ablation-and hence, explosion of the outer portion of fuel
capsule. Newton’s third law guarantees an implosion of the inner portion of the
fuel capsule, causing an effect of supercompression on the fuel material, raising
the material density as high as 1000 g/cm?®. This density, however, is still not
sufficient for causing the nuclei to fuse. The collapse of the fuel material causes
shockwaves, which travel at very high speeds towards the center of the fuel.
These shockwaves eventually collide inside the core of the fuel capsule and
resultantly raise the density as well as temperature of the spot of collision. Such
a rapid increment in density and temperature can assure there is enough kinetic
energy for the nuclei to overcome the electrostatic repulsion and sufficient
amount of fuel nuclei to maintain the fusion reaction rate high enough to reach
ignition- a self-sustained state of burn. The alpha particles produced by the
Deuteron-Triton (DT) fusion reaction also contribute to maintaining the reaction
rate because high density in the surroundings result in thermalization of these

alpha particles due to collision, eventually increasing the fusion rate.
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The Q value of DT reaction amounts to be 17.58 MeV out of which 3.52
MeV is carried by the alpha particle and the remaining 14.06 MeV is carried by
the neutron. Here it is important to mention the role a term often used in nuclear
fusion community- the reaction cross-section plays for selecting the DT reaction.
The reaction cross-section is defined as the probability of occurrence of a
particular reaction under the influence of an excitation mechanism. In case of
fusion reaction, the cross-section taken into consideration is a function of the
relative velocity of the two reactant nuclei. As per usual convention in nuclear
and high energy physics, the velocity is represented by energy, in particular, the
kinetic energy. For a collection of reactants, the velocity and hence, the kinetic
energy is usually defined in terms of a distribution function. An average
computed over the distributions of the product of cross-section and velocity is
termed as the reactivity. As can be seen in figure 1.3, the reactivity does not have
a linear relation with the temperature of the reactants, instead, has a particular
high value for each set of reactants at particular temperatures.
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Figure 1.3: Reaction cross-sections as a function of temperature for nuclear fusion candidates [5]

In the next section, a brief overview is given on magnetic confinement
fusion which encompasses some basic concepts starting from plasma physics up
to various problems and challenges encountered in realization of a successful

magnetic confinement scheme.



1.2. Magnetic Confinement Fusion (MCF)

The highest value of reactivity is obtained for a DT reaction at
temperatures as high as ~100 keV and hence, the DT reaction is preferred for
most of the ongoing fusion research. There exist some privately funded research
start-ups which use other candidate reactions for fusion energy production from
figure 1.3 to demonstrate their capability to achieve further extreme conditions.
It is clearly demonstrated in figure 1.3 that for any other reaction different to
DT, the temperature required to achieve highest reactivity is similar to that for
the DT reaction but the maxima of reactivity curve is at lower value compared
to the one for DT.

At such high temperatures, the reactants reach the plasma state.
However, not every hot mix of charged and neutral particles can be termed a
plasma because there are several characteristic quantities which are used to define
a plasma- mainly macroscopic neutrality, Debye length and plasma frequency.
Macroscopic neutrality means that in the absence of external forces, the plasma
volume is large enough to contain many particles, but small enough that the
particle density and temperature remain uniform and the net electric charge
within such a plasma volume is zero. In other words, the macroscopic charge
neutrality is obtained by mutual cancellation of microscopic electric fields
generated by charge separation inside the plasma volume. However, natural
departure from macroscopic neutrality can occur at distances large enough where
the energy imbalance produced by appearance of an electrostatic potential is
countered and nullified by the thermal energy of plasma particles. Since this
distance plays a major part in maintaining the macroscopic neutrality, it is
considered to be a characteristic distance, named after Peter Debye and his
pioneering work in explanation of its existence. The Debye length is defined as
the distance over which the influence of the electric field created by a charged
particle is felt by the other charged particles inside the plasma. Charged particles
arrange themselves inside the plasma such that effect of other charged particles
is effectively screened within the distance of the order of Debye length. For
plasmas, Debye length is given by:
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In other words, Debye length can also be understood as the distance
beyond which, fluctuating electric fields may appear inside a plasma. For
laboratory plasmas, Ap can be of the order of 100 pm where for plasmas spanning
over large distances, it can go as high as of the order of several hundred km.
Which means that a necessary condition that the dimension of the plasma L be
much greater than Ap because otherwise there is no sense for Debye shielding.

Mathematically,

Ap K L
A sphere of radius Ap can be termed a Debye sphere and it will have a
characteristic property that the particles inside the Debye sphere can only feel
the effect of the electric fields produced by the remaining particles inside. Any
resultant electric field outside of the Debye sphere has no effect on the particles

inside. The number of electrons inside a Debye sphere is given by:

Once again, for effective shielding and hence, consistent collective
behavior, the number of electrons inside a Debye sphere must be very large.
Keeping in mind the usual value of A for laboratory plasmas, one can conclude
that:

Np »>>1

For a medium to remain in plasma state, the condition of macroscopic
neutrality must be fulfilled but there are instances where due to external
perturbations, an instantaneous space charge distribution can be created inside
the plasma volume. Such a charge separation is often countered by the collective
oscillatory motion of the plasma particles and the frequency of these oscillations
is known as the plasma frequency. These oscillations are of very high frequency,
which make it near impossible for the massive ions to follow the electron motion
due to inertia. Eventually, the electrons end up oscillating about ions and the
electron-ion Coulomb force provides an effective counterbalancing measure. Since
the oscillations are practically electron oscillations, the oscillation frequency is

termed as plasma electron frequency and is given by:
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Plasma, however, does not only comprise of electrons and ions. There
can be neutrals as well and these neutral particles can create a hindrance to the
process of re-establishment of macroscopic neutrality by means of colliding with
electrons, eventually causing them to dissipate the energy they gained via the
electron-ion Coulomb attraction force. The electron neutral collision frequency
(Ven) must be very negligible compared to v, for achieving macroscopic
neutrality once again after removal of the external perturbation. This discussion

leads us to the third and final condition for definition of plasma.

wt >1

where w = 2mvy,, the angular frequency of typical plasma oscillations and 7 =

1, . . ..
—is the time between two consecutive electron neutral collisions. In other words,
en

there must be several electron plasma oscillations in between two successive
electron neutral collisions to guarantee that the medium is still a plasma and not

a neutral gas where the particles are dissipating energy by means of collisions.

The reason behind such an extensive definition of what is plasma is the
fact that 99% of the visible matter in the universe is in plasma form. Solar core,
nebulae, intergalactic medium, earth’s atmosphere are some examples of
naturally occurring plasmas. Different particle densities and collective
temperatures characterize different types of plasmas and hence, different methods
to exploit them for our benefit. Cold plasmas can be used for surface treatment
and hot plasmas can provide the perfect playground for nuclear fusion. The
question though, remained one of the highly sought-after ones about how to use
such hot plasmas for nuclear fusion. In late 1920s, the idea to use magnetic field
for controlling charged particles’ motion without making them lose energy was
first experimented upon. A moving charged particle under the influence of an

electromagnetic field feels a force given by:
F =q[E + (v X B)]
here F is the Lorentz force, ¢ is the charge of the particle under observation, E

is the electric field, v is the velocity and B is the magnetic field. In the absence

of an electric field, a charged particle will end up travelling along magnetic field



lines in helical orbits provided there is no other source of kinetic energy present
for the particle. According to Maxwell’s laws, the non-existence of magnetic
monopoles would mean that the magnetic field lines always create a closed loop,
rendering the particle travelling along the field line trapped. This very principle
is the underlying base of a magnetic mirror- a particle confinement scheme used

in early days of magnetic confinement fusion research.

Basic Magnetic Mirror Machine:

Particle ¥ : . < Magnetic Field
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Figure 1.4: Conceptual representation of a magnetic mirror configuration [6]

As shown in figure 1.4, a particle travelling along the field line reaches
the end of the mirror, where a lot of magnetic field lines are converging, raising
the magnitude of magnetic field high enough to make the particle change the
direction of its motion by m radians. In layman terms, the convergence of
magnetic field lines near coil 1 and coil 2 in the figure create a mirror where a
travelling particle is “reflected” by the sudden increase in the magnitude of the
magnetic field. Such a basic magnetic mirror configuration can confine the
particles, but the confinement efficiency is not large enough to use it for a reactor
scale fusion device. It, however, provided a strong head start to the search of a
better confinement scheme. Several different schemes like Z pinch, © pinch etc.
were presented and experimented with before Lyman Spitzer, came up with a
configuration named Stellarator in 1951, based on the idea of confining the
particles in a toroidal tube and wrapping the tube with solenoidal coils to produce
magnetic fields (see figure 1.5). The essence of the configuration lies in the
“rotational transform” where a magnetic field line would come back to its

original starting position after having intersected several cross-sectional planes in
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points which rotate about the magnetic axis successively. Depending on the
choice of method for generation of the rotational transform, different stellarator
configuration exists, namely Torsatron, Heliotron, Modular, Heliac and Helias.
Ever since its inception, the stellarator configuration has gone through many
different upgrades. However, in its early days, lack of necessary particle
confinement capability caused a loss of interest in stellarator research. Still, USA,
Germany, Japan, Spain and Australia have kept investing in stellarator research
due to a big advantage it provides over its contemporary configuration- the
ability of continuous steady state operation without the need of a constant
plasma current generation- and hence, without the need of a central solenoid-

making it a viable option for a reactor scale configuration.

Figure 1.5: Schematic diagram of the Wendelstein 7-X in IPP Greifswald [7]

Parallelly, in USSR, a different configuration was proposed by Igor
Tamm and Andrei Sakharov based on a letter written by Oleg Lavrentiev. The
core concept was somewhat similar to the one of stellarators in the sense that
curved magnetic field lines around a torus can provide a better particle
confinement in a stable plasma equilibrium. Igor Golovin coined the term
TOKAMAK- an acronym for a Russian phrase meaning Toroidal Chamber with
Magnetic Coils. Unlike stellarators, tokamaks produce their magnetic field
combining toroidal and poloidal magnetic field to obtain the helical field
configuration as shown in figure 1.6. The toroidal field is produced using toroidal
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field coils linking the torus whereas the poloidal field is produced by the current

flowing in the plasma.

Tokamaks perform a very good job at restricting the particle loss at the
walls of the vacuum vessel, something that initial configurations like z-pinch and
early stellarators could not. The crucial bit is to not only make the magnetic field
lines go around the torus but also make them twist. The relation between twists
and orbits is an important parameter for magnetic confinement fusion devices
and is termed as the safety factor q. Studies have shown that for the values of
q>>1, the particle loss is suppressed by order of magnitudes as compared to
configurations with q<1. Some world-renowned tokamaks are Alcator C-MOD
and DIII-D in USA, JT-60 in Japan, ASDEX in Germany, Joint European Torus
(JET) in UK, WEST in France, EAST in China, KSTAR in Korea, Aditya in
India, COMPASS in Czech Republic- and the biggest and most important in the
history of magnetic confinement fusion research- ITER; which is still under
construction. In the following section, a slightly more detailed account is given

about JET since a large amount of work for this thesis was done using JET data.
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Figure 1.6: Schematic diagram of a TOKAMAK concept [8]
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1.3. The Joint European Torus- JET

The JET is the biggest and only tokamak with a capacity to operate
with Tritium. It is located at the Culham Centre of Fusion Energy (CCFE),
Oxfordshire in United Kingdom. It will not be an exaggeration to say that JET
is the European flagship magnetic confinement fusion device. In 2021, JET went
through its second successful DT campaign, surpassing its previous records and
in the process, yielding a lot of useful knowledge for the upcoming phase of ITER
start-up.

JET came into inception in early 1970’s, with the design procedure being
initiated in 1973 and coming to conclusion in 1975. By the beginning of 1960s,
the stellarator research had taken a backseat owing to their inability to suppress
particle loss and on the other hand, tokamaks had become frontrunners for the
magnetic confinement fusion ideas. Meanwhile in 1957, J. D. Lawson published
his research, quoting a very important quantity for determining minimum
optimal values of three major parameters: the particle density, the energy
confinement time and temperature. The numerical product of these parameters,
also known as the triple product determines whether a reactor can reach the state
of self-sufficiency- the ignition. For the DT reaction, the Lawson criterion is

given by [9]:
> 1.5 x 10%° l
ntg = 1. —

here n is the particle density and 1z is the energy confinement time, defined as
the rate of loss of energy of a system to its surroundings. In case of nuclear fusion,
a lot of energy loss is observed especially by the acceleration of electrons, resulting
in Bremsstrahlung, radiated in the X-ray regime as well as poor confinement
leading to particles escaping the magnetic field and colliding into the vacuum
vessel, resulting in energy loss as well as unwanted damage to the vacuum vessel
walls. Also, it is important to note that the Lawson criterion sets a minimum
limit for ignition and it is not the absolute solution to all the ignition and burning
plasma related challenges. Ever since the discovery of the Lawson criterion, the
fusion research has been dedicated towards achieving it.

As can be seen from the figure 1.7, from the moment of discovery of the
Lawson criterion, two decades of work in tokamak research had yielded not much

progress, in fact, there were no DT experiments made under reactor relevant
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conditions. This makes JET an ever so important experiment in the quest for
betterment of our understanding of the science and challenges of ignition. In
context of fusion, ignition is the steady state of a reactor where the plasma is
able to heat itself using the fusion products, without requiring any auxiliary
heating mechanism, to produce net energy output. The net energy output, in

scientific terms, the ) value of a reactor is defined as:

_ Total energy output
~ Total energy input

Here, the total energy input is a very important quantity because not
only the current necessary to be driven through the central solenoid of a tokamak,
but also, the current used for powering the electromagnets to generate high
magnetic fields, as well as different types of heating systems are main
contributors to the value. So, for an ideal scenario, a reactor upon reaching
ignition, should enter a phase called burning plasma- where the plasma is able to
maintain the heating using the DT fusion reaction, heating by o particles and

also, neutrals.
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Figure 1.7: Progress in achieving fusion grade machine conditions [10]
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JET was designed with the objective “to obtain and study a plasma in
conditions and dimensions approaching those needed in a thermonuclear reactor”
as per the design team of JET. These conditions included the capacity to be able
to make DT plasmas and study o particle heating produced by the DT fusion
reaction. Not only that, but the long list of specific objectives also included study
of different heating methods, plasma wall interaction, train personnel for
operation of reactor with emphasis on plasma start-up, shaping and termination.
The initial parameters of JET in the draft design are given in table 1.1.

Table 1.1 does not include the parameters of extended performance
scenario, which would raise the magnetic field up to 3.5 T and plasma current
for a D-shaped plasma up to 5 MA. The initial design of JET even included a
capacity to use additional heating power of the order of 4-10 MW. The additional
heating systems included Neutral Beam Injection (NBI), Radio Frequency (RF)
Heating and Adiabatic Compression. The JET vacuum vessel can contain a total

plasma volume of the order of 100 m?.

Parameter Value

Horizontal plasma minor radius (a) 1.25 m

Vertical plasma minor radius (b) 210 m

Plasma major radius (Ro) 2.96 m
Plasma aspect ratio (Ro/a) 2.37
Plasma elongation ratio (b/a) 1.68
Flat top pulse length 20 s

Total magnetic field at plasma centre 2.71'T

Plasma current for a D-shape plasma 3.9 MA

Table 1.1: JET parameters from the initial design

The initial goal of JET was to reach Q=1 with DT experiments. After
the successful DT campaign in 1991, where JET created record for the highest
fusion power production, it was demonstrated that JET can and must be used
for learning and understanding ITER operational scenarios. In 2009, it was
decided to use JET with ITER like wall (ILW), where the JET Plasma Facing
Components (PFC) were upgraded from Carbon Fiber Composite (CFC) to the
ones with Tungsten and Beryllium (ILW) in order to simulate ITER
experimental scenarios with further precision. JET was designed with a capacity
to be operated with both circular and D-shaped plasmas because studies have

shown that an elongated plasma cross-section helps improve particle confinement.
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Also, the use of divertor can help improve plasma performance with removal of
impurities. Hence, in elongated plasmas, a separation boundary is introduced in
the magnetic field, termed as separatrix. There is a small zone between the
separatrix and PFC, called the Scrape Off Layer (SOL), where a lot of interesting
physics occurs. Studies of edge physics for elongated plasmas have benefitted a

lot at JET, with different type of divertor configurations being tested.

Figure 1.8: JET conceptual design [11]

Just like any other experiments, JET is also equipped with different
types of very capable diagnostic systems [12,13,14]. Passive diagnostic systems
like radiation detectors for studying all types of detectable radiation emitted by
the plasma, particle detectors for detecting neutrons and charge exchange atoms
etc. for measuring neutron yield and ion temperature as well as distribution
functions alongside field detectors to observe, measure and control changes in
electric and magnetic fields were installed initially. For active diagnostic systems,
Laser based diagnostics like interferometer and Thomson scattering method have
been an integral part of the JET diagnostic set-up. Over the years, many
upgrades have been made in the existing ones to improve their time resolution
and new diagnostic systems have been installed using novel approaches for better
understanding of the JET plasma. Currently, the JET hosts over 100 different
diagnostic systems, providing a hawk-eye view into the plasma. Not only is JET

enabling the testing of newly developed diagnostics, it also serves as a breeding
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ground for new methods and techniques, especially after being chosen to be the
ITER dummy for physics and technology testing and benchmarking. A plasma

cross section of JET is shown in figure 1.9
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Figure 1.9: JET plasma cross-section [15]

In terms of auxiliary heating systems, JET is equipped with NBI system,
where Hydrogen nuclei are accelerated to very high voltages (~80000 volt), only
to be converted back to atoms in a neutralizer chamber before being shot inside
the plasma to heat up a concrete region of plasma volume where the neutrals
deposit the energy into the plasma by means of collisions with plasma particles.
The key part of NBI heating lies in the fact that charge neutral particles are not
affected by electromagnetic fields. So, for maximum efficiency, the neutralization
rate in the neutralization chamber must be high enough for maximum
penetration of the neutral beam. The NBI system also has the capability to use
Deuterium atoms at energies up to 1.6 MV. At the commissioning of JET, a total
of 10 MW worth of neutral beam power was available [16]. With several upgrades,
the NBI power capacity at JET stands at a maximum of 25 MW today.
Additional 15 MW of auxiliary heating power was supplied by the RF heating
system, which worked on the principle of energy resonance. Lower Hybrid

Resonance Frequency of the ionic oscillations at ~1 GHz and Ion Cyclotron
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Resonance Heating (ICRH) in the range of 5-50 MHz was available during the
commissioning of JET. Over the course of time, the capacity of the ICRH system
has been fine-tuned further with higher power and precise frequency for heating
depending upon the species to be heated. A total of 35 MW of additional heating
power is now at disposal via ICRH at JET. The lower hybrid resonance heating
system has also been upgraded and is now operating at the frequency ~3.7 GHz
with a power capability of 15 MW.

In an experimental facility as large as JET, it is very important to have
a streamlined control and data acquisition as well as storage system. With
millisecond level precision required for the smooth conduct of a singular
discharge, automated systems have been deployed as and where possible. A single
JET discharge results in huge amounts of data- only diagnostics data amounting
to ~60 GB and most of it is raw data, which needs further processing. Specialized
computer-based data analysis tools have been developed for fast data processing.
Dedicated data validation is done with critical scientific inputs and minimum
machine usage to guarantee that the data available to the scientific community
is checked for basic errors.

Apart from error free data, another salient feature of JET is the
capability of instantaneous reaction to occurrence of unexpected scenarios during
a discharge- scientifically termed as exceptions. A dedicated infrastructure is set-
up at JET for real time exception handling and is called Real Time Protection
Sequencer (RTPS). In order to alert the RTPS of necessary action, a real time
data processing framework was successfully deployed in JET in 2018. The
framework is called Plasma Event Triggering for Alarms (PETRA) and it holds
machine protection and experimental schemes. The main objective of PETRA is
to provide platform for various existing and novel methods which involve real
time processing of JET data for controlling the trajectory of a discharge. It is
quite possible that during an experimental discharge, a certain system responsible
for the smooth execution of discharge as planned may run into a fault or the
plasma evolution does not correspond to the forecast made prior to the discharge.
In such a case, to avoid damage to the vacuum vessel or to avoid waste of
resources in case of failed discharges, it is important to either drive the discharge
towards a safe termination or force shut down the systems for failed discharges
to save resources. PETRA provides the capacity for both, making it an important

part of discharge execution as well as device protection system. PETRA is robust

18



enough to be able to maintain a processing cycle under the hard limit of 2 ms,
guaranteeing the use of highest resolution of available data in real time [17]. Not
only processing, PETRA is equipped with the capacity of storing all data
necessary for analysis of PETRA response during a discharge and further
analysis. The work presented in this thesis is a result of PETRA’s operational
capability and will be referred to time and again during the course of the
document.

An important aspect of JET, often not talked about much is the remote
handling capacity of radioactive components. JET boasts of housing a robotic
arm which is often used for installation and extraction of vacuum vessel
components and comes in very handy especially after DT experimental
campaigns. All these features and facilities make JET the obvious and most
suitable candidate for ITER mockup experiments, which will be briefly

introduced in the next section.

1.4. ITER

After successful construction and commissioning of JET, the erstwhile
plans and ideas for a joint international fusion project got revived. The roots of
ITER though, can be attributed to the International Tokamak Reactor (INTOR)
workshop organized by the International Atomic Energy Agency (IAEA) in the
year 1978 [18]. In the following decade, efforts from fusion enthusiasts across the
globe to study and assess the possibility of a tokamak for fusion energy
production were exponentially increased. The Geneva summit in 1985, where
Ronald Reagan and Mikhail Gorbachev agreed for a combined effort to harness
fusion energy marked an important political milestone after the de-classification
of initial tokamak results from the USSR in 1960s. Interest from European
Atomic Energy Community (EURATOM) and Japan to join the efforts was
welcomed and in 1988, the conceptual design of ITER began with four main
parties namely EURATOM, Japan, USSR and USA. The final ITER design was
approved in 2001 and by 2005, China, Korea and India had decided to join forces
in the project. The same year, the member parties agreed to select the site
proposed by the European Union in southern France, a village near Aix-en-
Provence. In November 2006, the official ITER agreement was signed by officials

from member parties and [TER Organization came to establishment in October
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2007 and construction phase began. As of today, the assembly hall is ready and
the work to veld the vacuum vessel has been initiated.

As per the official website, ITER is designed to produce 500 MW of net
fusion power with DT fuel, similar to a medium size power plant. Upon
commissioning, it will become world’s largest tokamak having a plasma volume
of 840 m?®. In table 1.2, key parameters for ITER are listed. The prime objective
of ITER is to demonstrate ()=1, which is termed as breakeven. Breakeven is
achieved when the net amount of fusion power produced is equal to the total
amount of input power. However, ()=1 is the first goal, with the ultimate goal
being achievement of ()=10, where injection of 50 MW of power would yield 500
MW of fusion power- thus, demonstrating the reactor scale operational capability

of tokamaks and nuclear fusion in general.

Parameter Value
Major radius (R) 6.2 m
Minor radius (a) 2m
Toroidal field at R (Br) 5.3 T
Plasma current (Ip) 15 MA
Safety factor (q) 3
Average ion temperature (T;) 8 keV
Average electron temperature (T.) 8.8 keV
Average electron density (n.) 10.1 x 10* m?
Fusion power (Prusion) 400 MW
Fusion gain (Q) 10
Pulse length 400 s

Table 1.2: ITER parameters

On the roadmap of commercial fusion power, ITER is a very important
milestone because it will put an end to the ever standing stigma and lack of belief
in fusion as an environment friendly global energy crisis solution. Once ITER has
been experimented with to test different technologies, it will pave the way for
the demonstration power plants for all the member countries. Just like ITER is
expected to show the world the proof of promise of magnetic confinement fusion,
the demonstration power plants will be used as prototypes for commercial fusion
power plants with () going as high as 100. The scientific community is gearing
up for first plasmas at ITER in 2025, which would mean that we might see
deployment of commercial fusion power plants in later years of 2050s.
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Chapter 2 — Thesis Objective

This chapter contains explanation and justification for the origin of the work
presented in this document. Starting with principal objective, where we define
the foremost reason and requirement to carry out the work, a brief introduction
is given to the phenomenon of disruptions as well as the centroid method

predictor.

2.1. Principal Objective

The work presented in this thesis drives its motivation from the idea to
use nuclear fusion for future commercial energy production in order to meet rising
global energy demand.

A broad objective of the research work being carried out across the world
in the field of automated disruption prediction is to obtain reliable and fast
predictors for future power plant class fusion reactors. Achievement of ignition is
costly energetically speaking as well as continuous maintenance of triple product-
hence, it is desirable that once a reactor is in the burning plasma phase, the
duration of the discharge be as long as physically and technologically possible.
Disruptions- as the name suggests, disrupts the continuous operation of a
discharge and in many occasions, leads to undesired, rapid, violent termination
of the plasma discharge.

An expedient quality in a disruption predictor is the simplicity of physics
interpretation of the underlying model as well easy extrapolability for its usage
in a different size and scale reactor. Not only that, but a consistent high
successful detection rate alongside negligible false alarm rate is also expected
accompanied by acceptable warning times. Ideally, large warning times are
desired to provide sufficient time for suitable actions to be taken- be it
avoidance, where the discharge is operated within the safe operational
boundaries and in case of even a smallest departure from safety limits, quick
return to the safety limits is executed. If the warning time is not sufficient for
avoidance, prevention methods are used to drive the plasma towards a safe
termination regime because if not done so, the discharge might end up
disrupting. In the worst-case scenario, where the disruption is occurring,
mitigation is the only remedy and the discharge is required to be terminated

immediately in order to ideally prevent or reduce the harmful effects on the
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vacuum vessel. If a disruption is detected falsely and the discharge is terminated
in order to safeguard the tokamak, a sizable cost is incurred in terms of
resources. It is also important to mention that the predictions need to be made
using real time diagnostics data and not simulations because actual data
provides a better basis for estimating the plasma state being disruptive or non-
disruptive whereas simulations can sometimes mislead due to the usage of

approximations or machine rounding errors.

2.2. Introduction to disruptions

Disruption is defined as a rapid loss of plasma confinement, often
accompanied by perilous energy deposition in the VV as well as exertion of
catastrophic level electromagnetic forces on several different components of a
tokamak. Not only does a disruption pose threats to the structural and
mechanical components of a tokamak, but it can also cause a reduction in the
effective efficiency of energy production and hence, the net Q-value over the
lifespan of a tokamak power plant.

When a disruption occurs, the plasma position control is lost and plasma
eventually ends up making contact with PFCs, dumping huge amounts of
thermal and mechanical energy into the VV. A very high energetic runaway
electron beam is also produced during and following a disruption in some cases.
This resultant runaway electron beam usually carries a large fraction of the
plasma current as well very high energy- all of which is deposited in the PFC,
causing tremendous harm and reducing their durability and hence, their lifespan
significantly.

Subsequently, the continuity of a tokamak reactor operation is difficult
to maintain given that the maintenance and replacement of various PFC
components, which have been activated upon constant irradiation of neutron,
alpha and several other types of particles as well as radiation, must be done using
remote handling and for a reactor class tokamak, the size of these PFCs can make
the duration of this task of the order of several days at the least.

Different approaches have been deemed useful to tackle the problem of
disruptions. A timely detection should allow for usage of massive gas injection
(MGI) to cool down plasma and alleviate the energy dump to the PFC in case
of avoidance being out of scope. To compensate for large sideways movement

caused by the electromagnetic forces, structural improvements for seismic
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activity tolerance are also employed in the construction of the ITER main
chamber building.

The key is to be able to detect upcoming disruptions, possibly, with also
identifying the type of disruption- by means of an automated system to then,
produce system response in accordance with the necessity of each disruption
scenario. The task is not easy and there exist a variety of opinions over what is
a bare minimum. A detailed account is given in the next chapter where

disruptions and type of predictors are discussed in thorough detail.

2.3. Centroid Method for disruption predictions

The centroid method is an attempt to produce a disruption predictor
with all the desirable qualities. A linear equation means adaptability feature
regardless of the size or scale of a reactor, easy fundamental physics concept
provides seamless scientific explanation and usage of few plasma diagnostics
signals makes it versatile enough without special requirements of dedicated
systems for implementation. The implementation would consist of a 3-phase
process as described:

a. Training phase where existing data is used for gathering information
about the disruptivity of a discharge, identification, and extraction of
useful features to obtain centroids in the parameter space.

b. Testing phase where the centroids derived in the training phase are
used to determine the success rates, false alarm rates and warning
times. Fulfillment of desired threshold values of those three quantities
would mean a successful validation of the physics model used in
training.

c. Deployment phase where the centroid method predictor is installed in
the RTN of an experimental device, functioning alongside several

other critical systems for successful operation of the device.
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Chapter 3 - Disruption Predictors

This chapter encompasses a detailed discussion about the progress made in the
field of disruption predictors. A brief overview of disruptions in JET and ITER
as well as disruption handling is given to introduce the need of disruption

predictors. Different approaches and methods used are given an overview.

3.1. Disruptions in JET and ITER

For maximum exploitation of a tokamak plasma, it is essential to be able
to control the evolution of the plasma with absolute planning and certainty. Over
the years, constant research and experience has produced commendable
understanding of fusion grade plasmas, which in turn, has resulted in scientists
being easily able to drive the discharge in desired direction. It is, however, not
the case for every single discharge since the extreme high temperatures, densities
and electromagnetic fields create a rather hostile environment for plasma
particles, resulting in plethora of phenomena that can perturb the planned course
of evolution of a discharge. Up until 1982, only one confinement mode was known
in tokamak plasmas but Wagner et al [19] showed that if additional neutral
heating is applied upon reaching a certain density threshold during a discharge,
a sudden improvement in plasma performance can be achieved. This
enhancement in performance was found to be a consequence of simultaneous
improvement of transport of energy and momentum transfer of particles and
impurities. Later, H-mode transition was demonstrated using ICRH as well [20].
Even though the appearance of H-mode was a surprise, the physics of its
occurrence was understood very soon as can be seen through H-mode
demonstration in different devices like PDX [21], DIII-D [22] and JET [23]. Soon,
it was understood that to achieve best fusion power output, it is necessary to use
the H-mode and the highest fusion power achieved before ITER design was in
fact in the H-mode [24] to influence ITER design [25].

Long before the discovery of H-mode, there were several unwanted
plasma phenomena already detected and being understood. This class of
phenomena is termed as Magneto Hydro Dynamic (MHD)-phenomena, deriving
the name from the theory applied to understand flows in plasma. MHD approach

combines electron and ion fluid model to yield a single fluid approach for the
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description of the plasma as a fluid. Depending on the plasma configurations, one
can use ideal MHD approach or resistive MHD approach for describing the
confined plasma. In presence of perturbations, the MHD equilibrium is disturbed,
leading the total plasma potential energy to change. If the energy change caused
by the perturbation is positive, then it is understood that the plasma is stable
with respect to the perturbation whereas in the case of a negative energy change,
plasma becomes unstable. The change in plasma energy has several contributors
and majority of them are mostly stabilizing. However, there are contributions
which can be stabilizing or destabilizing. One such possibly destabilizing term is
dependent on the pressure gradient and the instabilities rising through such a
contribution are called “pressure-driven” instabilities. The other term causing
loss of equilibrium is based on the parallel component of the current and hence,
are termed as “current-driven” instabilities. There is a third class of instabilities,
named as “particle-driven” instabilities and are based on the fact that some MHD
instabilities can interact directly with the plasma particles.
Furthermore, depending on the nature of the instability, we could have
“ideal” or “resistive” instabilities which either preserve or modify the flux surface
boundaries in plasma. From a point of view of the plasma-vacuum interface, the
MHD instabilities can be classified as “internal” or “external” depending on
considerations whether the boundary between plasma and its surrounding is fixed
or can be moved. Furthermore, another classification can be added based on the
time evolution of such instabilities, namely “linear” and “non-linear” where in
linear instability, there are possible ways to stabilize the perturbation but in case
of a non-linear instability, only the saturation of mode saturation is reached and
no free energy is available for dissipation. In a nutshell, it is not incorrect to say
that classification of MHD instabilities is an imprecise task because in many
cases, the destabilizing mechanisms are a mix of different origin and not a single
prevalent one. Sometimes the origin of the instability is unknown and it is rather
identified by a phenomenological name. A brief overview of some MHD
instabilities is given.
1. Kink Instability: Rational flux surfaces are susceptible to intense

effects of toroidal current (q = %) Low poloidal mode number (m) modes can be

destabilized by the plasma current and the instabilities rising from such
perturbations are named kink instabilities. They can be of both internal and

external type. The internal kink modes result in sawtooth oscillations, typically
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observed in the center of the plasma column. The detection of these sawtooth
oscillations is made by soft X-ray (SXR) diagnostics.

2. Tearing Mode Instability (TM): Adding finite resistivity to
the basic kink modes’ theory results in the appearance of tearing modes. Term
“tearing” is used because the structure of the flux surface prior to the appearance
of perturbation is torn apart and the modification of flux surface results in
reconnection of magnetic field lines- giving birth to “magnetic islands” in the
vicinity of the rational surfaces. These tearing modes present a strong limitation
on the maximum energy of a tokamak plasma. For high performance fusion
plasmas, often the appearance of Neoclassical Tearing Modes (NTMs) is a great
cause of concern because the slowing down of its rotation speed leads to a sudden
and catastrophic loss of plasma in 100s of microseconds- a phenomenon called
Disruption. In the following subsections, a detailed account is given of the
causes and repercussions of the disruptions.

3. Ballooning Instability: The ballooning instability originates from
the drifts the plasma particles experience in curved magnetic field lines. The
pressure gradient in unfavorable magnetic curvature due to the anisotropy
introduced by the magnetic field lines causes the plasma to bulge out, causing
oscillations with a long wavelength along the field lines but comparatively much
smaller in the direction perpendicular to the magnetic field.

4. Edge Localized Modes (ELMS): Studies have shown that a
good plasma confinement in reactor class tokamaks will lead to steepened
pressure profile at the plasma edge. If the value of pressure gradient exceeds a
critical value, a certain type of instability is produced, featuring a periodic fast
collapse of the edge pressure. This edge pressure drop is accompanied by a sudden
loss of confinement, which, consequently, leads to the particle and heat dump on
PFCs. These periodic heat and particle release on PFCs reduce their lifetime
significantly and hence, in the past two decades, dedicated efforts have been
made to understand the cause, types and ways to control ELMs since ELMs are
bound to appear in the H-mode operation of tokamaks and the fact that H-mode
is so far the best plasma performance mode, it is given that all the future reactors,
including ITER will operate in H-mode.

ELMs, as the name suggests, appear in the plasma edge and even though
their origin is well understood, so far there has been not one single individual

cause identified for their destabilization. Characteristics like magnetic
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fluctuations, shorter growth time scales as well as eerie vicinity to the MHD
stability limits of a plasma at the occurrence point at the onset establish ELMs
to be an MHD phenomenon (or a combination of several). However, different size
and shape of plasmas may lead to different types of ELM drives, which makes
the classification of ELMs a very important task. Different approaches have been
used over the course of time to distinguish between various types of ELMs.
Theoretical, experimental and analytical research done during the past 3 decades
has brought a general understanding about three different types of ideal MHD
instabilities at the edge transport barrier namely Localized Peeling Modes,
Edge Ballooning Modes and Coupled Peeling-Ballooning Modes.

While considering the plasma contact with the vacuum vessel walls, one
needs to utilize the “resistive” MHD model. In this consideration, the kink
instability is modified and termed as Resistive Wall Mode instability which
is characterized by its comparatively slower growth rate with respect to the ideal
MHD instability.

Above mentioned and many other instabilities alone or in form of a
combination, can hamper the equilibrium of plasma, resulting in a Disruption.
Since the fundamental theme of this thesis revolves around disruptions, it is only
fair to have a closer look at the phenomenology of disruptions. For obtaining
maximum energy output from a tokamak, it is essential to be able to operate it
in a disruption free steady state condition for longer periods. However, there are
multiple constraints that reduce the steady state operational regime of a
tokamak. Maximum values of plasma current, particle density and normalized
plasma pressure (also known as plasma B) are the main constraints. The limits

are set up as follows:

i.  The plasma edge safety factor gs 2 ~ 2 sets up the current limit because
q is defined as
o T
RB,
with Bg being the poloidal magnetic field and B, being the toroidal
magnetic field, r is the distance of point of interest where we want to evaluate
the safe factor from plasma core and R the major plasma radius. The poloidal
magnetic field is produced using the toroidal plasma current, which means that
for plasma currents higher than a certain values, the poloidal magnetic field is
too high to bring the edge safety factor below 2, causing the plasma to be
28



magnetohydrodynamically unstable at the last closed flux surface. Also, the
notion of ¢¢; has been used in divertor configuration tokamaks to emphasize that
it is convenient to use the ¢ value at a flux surface that encloses 95% of the
poloidal flux, just inside the separatrix since the value of ¢ approaches infinity at

the separatrix.

ii. The density limit is set by the fact that the plasma temperature varies
from the core to the edge of the plasma cross-section and the plasma at the edge,
specifically near the separatrix is comparatively cold and radiative. In case of
very high densities, this cold and radiative plasma starts expanding inwards
towards core from the separatrix and using the closed field lines of the core
plasma, a poloidal symmetrization of the radiating layer is obtained quickly,
which resulting in the plasma being resting on a radiation gas mantle instead of
a solid limiter [26]. In theory, such a configuration can be stable but more often
than not, these “poloidally detached” plasmas are unstable and lead to a rapid,
uncontrolled contraction of the temperature profile, eventually perturbing the
MHD stability of the plasma. It is a phenomenological limit and theoretical
investigation for a complete physics based understanding of the origin of the

density limit is still on. Numerically,

Where Ip is the plasma current, a is the minor radius and ne¢ is the line
averaged density.

iii.  The pressure limit originates form the study made by Troyon, where the
hard limit was set for MHD stability against all types of ideal MHD modes. In
the original study, Troyon and his coworkers performed an optimization
procedure by means of variation of plasma cross section, plasma current and
plasma pressure profiles for an expansive set of realistic conditions. It is defined
using the plasma beta, a parameter often utilized for plasma performance

description.

(p)
BZ/ZMO

where (p) is the mean plasma pressure, B is the total field strength. The

ﬂ:

Troyon factor, also known as the normalized beta is given by,
aBr

By = .BT
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with Br being the toroidal magnetic field, a is the minor radius and Ip is
the plasma current.

The onset of a disruption can be further divided in different segments,
starting from an instability appearance, going through a precursor phase and
terminating with either a current quench (CQ) followed by a thermal quench
(TQ) and vice versa. In many cases, thermal quench does not mark the end of a
disruption since a rapid current quench may produce very high electric fields in
the plasma, leading to the generation of runaway electrons. More details about
phases of disruption evolution can be found in Schuller et al. [27].

Occurrence of instabilities in fusion plasma is a very common
phenomenon owing to the fact that there can be many actuators. Also, sometimes
due to operational or mechanical errors, plasma equilibrium can be lost, which
eventually results in a breeding ground for a disruption. It is important to
mention though, that constant monitoring of plasma behavior is now possible
and still, sometimes the growth rate of an instability or slightest delay in machine
system failure detection is enough for provocation of a disruption. By the time
changes in plasma parameters or faults in machine systems are detected by
diagnostics and real time plasma control system, the plasma equilibrium worsens
and concrete signs of such deterioration are picked up by the monitoring systems
and are commonly known in the scientific community as precursors. These
precursors are used in design of disruption predictors with focus being put on
prompt detection of precursors. Such disruption predictors play a vital part in
disruption mitigation and amelioration and hence have been one of the most
sought-after tools for the future reactor grade tokamaks.

Rapid growth of MHD instabilities and detection of precursors is followed
by a sudden collapse of favorable plasma profiles, flattening of radial current
profile and core temperature drop are a couple of indicators of a collapsing
plasma. This kind of collapse leads to the plasma dumping a significant portion
of its thermal energy on the VV wall in a time span of ~ 100 ps. This phase is
known as thermal quench. The thermal quench cools down the plasma, and in
process, increases plasma resistivity and as a consequence, the plasma current
decays rapidly, too. For tokamaks with a vertically elongated plasma cross
section, thermal quench may also provoke vertical instability, where the control
over vertical plasma position is lost and plasma ends up moving upwards or

downwards with respect to the magnetic axis, resulting in what is known as a
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Vertical Displacement Event (VDE). This vertical movement of plasma
cause the plasma to make contact with the first wall. Typical time scale for
current quench and VDE development in medium size tokamaks is of the order

of several ms.

3.2. Importance of disruption handling

The reason behind disruptions being given such a detailed attention in
MCF research community is the severity of repercussions caused. Thermal
quench results in extreme heat loads on First Wall Components (FWC), current
quench can cause extremely high electromechanical forces, causing structural
damage to the VV and runaway electrons can result in localized surface and
substrate damage.

According to Hender [28,29], for a tokamak of linear dimension L, the
energy stored in a tokamak plasma rises to the order of L’ and hence, the energy
dissipation at the VV wall caused by a disruption gets to the order of L’. This
would mean that for the case of going from JET to ITER, the disruption wall
load can result in an increment of one order of magnitude. The electromagnetic
loads produced during disruptions are also dependent on the size of the tokamak
alongside the toroidal magnetic field Bs. The electromagnetic load has a squared
dependency on both L and Be (Wgy ~ LIpBs and furthermore, I ~ LBs), leading
consequently again to a dependence order of L since By does not increase linearly
with L in tokamaks empirically. To improve the confinement and stability of
reactor class tokamaks, the plasma cross-section is chosen to be of D shape for a
given edge safety factor. This vertical elongation of the plasma cross-section,
however, renders the plasma vulnerable to vertical instabilities, which can
eventually cause the plasma to move in vertical directions and disrupt regardless.
To combat such vertical displacement events, a sturdy control system is required.
Sometimes, the operation in close vicinity of plasma stability limits can also result
in a disruption.

Several exhaustive studies made on JET over the years have
demonstrated the effects of disruptions. According to Hender [29], the minimum
current quench (CQ) duration at JET on average has been observed to be of the
order of 9.4 ms, resulting in induction of eddy currents capable of causing relative
forces of the order of 220 T?/s. Additionally, the production of runaway electrons

can induce an electric field as strong as 38.3 V/m in the plasma, resulting in
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exponential avalanche gain and reducing the shutdown time to avoid Be first
wall melting to 30 ps. These numbers are only for JET, when extrapolated for
ITER and eventual commercial reactor class tokamak using appropriate scaling
laws, still return values that are very high for tolerance of materials used in fusion
research today.

For preparations of ITER experiments, JET PFCs, which were
previously made predominantly of carbon, were replaced by a metallic wall
(ILW), comprising of main chamber beryllium (Be) tiles and on the divertor, tiles
made from bulk tungsten (W) as well as tungsten coating. The heat loads
produced by disruptions are quite capable of melting the first wall tiles of Be at
~20 MJ m? s? and W at ~50 MJ m™ s'/? [30]. As per de Vries [31], the Be melt
limit can be easily reached for a quench occurring ~ 2.5 ms of 1 MJ thermal
energy.

In case of a current quench, the outcome is a strong electromagnetic force
on VV caused by either the quench induced eddy currents or the infamous halo
currents. The eddy currents are induced due to the increase in plasma resistivity
and subsequent current decay whereas halo currents are produced when the
plasma makes physical contact with the surrounding conductor- in case of a
tokamak, the VV. The value of halo current depends on the time plasma takes
to make contact with the VV during the CQ phase. If the contact is made very
early during the CQ, large amounts of halo currents are generated. This points
towards the conclusion that if the growth rate of plasma positional instability
can be slowed down, the resultant halo current can be lower. It is observed in
JET [31] that the dynamic reaction force produced during the disruption also
changes with the change in PFC material. The ILW produces higher reaction
forces in the vessel and are explained to be related to the duration of CQ phase
and halo time. In the past, forces of strength as high as several tones and sideways
roll and swing have been observed. These force damage the structural integrity
of the VV mechanical components and reduce their lifetime.

Another detrimental outcome, probably the most directly visible of all
possible outcomes, is the generation of runaway electrons. The rapid rate of
current quench causes induction of a parallel electric field. This electric field can
end up accelerating plasma electrons. If an electron is already moving sufficiently
fast, can further benefit from the acceleration of the induced electric field and

move even faster, reducing the collision frequency in the process. This reduction
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in collision frequency is also reflected in the reduction of friction force and hence,
the electron can indefinitely keep gaining kinetic energy, as discovered by Dreicer
[32, 33]. In recent years, another theory has been put forward and investigated
both theoretically as well as experimentally. According to the new theory [34], if
during a collision, the velocity of colliding particles changes considerably, one of
the colliding particle is a runaway electron, it can push a thermal electron beyond
the runaway threshold while still remaining a runaway electron itself. Such
collisions may result in an exponential growth of the runaway electron
population, resulting in an avalanche. The only necessary condition for the onset
of such a runaway avalanche is the presence of a “seed” population of fast
electrons in the plasma. Usually, the kinetic energy of runaways is of the order
of tens of MeVs and a beam of such high energy runaways can produce significant
damage to the PFCs.

3.3. Disruption predictors

As explained in the previous section, disruption handling is a crucial part
of successful tokamak operation. The most important role in disruption handling
is played by disruption predictors. In order to be able to carry out mitigation or
avoidance action, it is important to predict an impending disruption with
sufficient time. As shown by de Vries [35], the improvement in understanding of
JET disruptions and introduction of vigorous precautionary protocols in
operational scenarios have reduced the yearly averaged number of unintentional
disruptions from a low 20% in 1990s to a significantly below 6% in 2000s. The
merit was given to the improvements in the technical capabilities of tokamak
operation near stability limits.

Complete suppression of disruptions seems impossible until a closed
physics understanding encapsulating all the possible causes and repercussions is
developed. Even though the root cause of the onset of a disruption is related to
physical phenomena for majority cases, there are chances that human error
during operation or even machine systems failure may result provoking a
disruption. The consequences being extremely severe as discussed in the previous
chapter, ITER is aiming for an operational efficiency of less than 1% of total
discharges to be disruptive. With a projected operational life span of 15 years
and the number of approximate experimental discharges to be of the order of
50000, still the 1% comes out to be large enough for ITER, which is not designed
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to withstand disruptions. Extended studies have shown that classification of
disruptions based on their severity in terms of machine impact leaves little to no
room for disruptions in ITER.

With ever improving understanding, different approaches have been
adopted to tackle the incoming disruptions. The ideal scenario being a complete
avoidance, where the disruption is detected well in advance so that the
operational conditions could be modified in order to cure the root cause and
terminate the discharge without any damage. The more practical approach is the
one of prevention, due to the lack of existence of predictors which can reliably
predict an impending disruption with sufficient warning time where the operators
can select a course of action and the vessel control system can execute it (in JET
this time is ~ 10 ms). The least desired option is that of mitigation action, which
has the objective to minimize the damage caused to the vessel by dissipating the
plasma energy before swiftly terminating the discharge, mostly by cooling down
the plasma using different methods to achieve minimum energy dump on the VV
walls.

In order to prepare for disruption handling, various methods have been
used to design disruption predictors. Some methods are based on physical
phenomena like detection of radiation peaking or density peaking whereas some
methods rely purely on data from past experiments and use machine learning
methods deploying artificial neural networks, support vector machines,
reinforcement learning etc. Each approach has its pros and cons e.g. a physics
based predictor depends only on the availability of reliable diagnostics in order
to detect the onset of disruption root cause and no past data is needed but in
case of a data based predictor, one only needs vast amount of past experimental
data to train a model and once trained, the model can be deployed straightaway
into the real time system for disruption prediction. The problem of availability
of historical data is not a big issue with the discovery of approximation from
scratch method, where a predictor is trained on the go, using data from new
experiments and being independent of availability and reliability of substantial
amount of historical data. The former approach not only leads to prediction of
disruptions but also provides capability to provide a scientific explanation of why
a certain prediction was made. For a data based predictor, often the conflict
arises from the lack of acceptable physics interpretation behind a prediction.

Given this, it is also important to note that machine learning methods not only
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3.4.

provide the capacity of disruption detection, but also, the possibility of
classification of the type of disruption. It is worth mentioning that development
of such predictors is one of the biggest challenges for fusion research community
because it has vast potential of opening new research pathways based on class
identified disruption predictors, which can be implemented for -catered
experimental scenarios in order to improve the fusion power output performance
of future reactors and enabling the maximum exploitation of the potential of
fusion energy.

The general approach in machine learning for disruption prediction is
based on the fact that the task can be simplified to be a binary classification
problem where the system only needs to identify the plasma behavior as either
disruptive or non-disruptive. There can be different ways to solidify this
classification by adding weight systems or voting systems or even a combination
of both. Final outcome though, is whether the plasma state under examination
is disruptive or not. In the following sections, a summary is provided on different

types of models and predictors designed and being used during the thesis.

Physics Based Detectors

A brief overview about PETRA was given in Ch. 1 and how it performs
the tasks related to exception handling in the JET Real Time Network (RTN).
PETRA hosts a variety of disruption predictors as well as event detectors since
the operational protocols at JET require the usage of real time device protection
system. The protection scenario in PETRA works in the following manner: A
disruption warning is triggered when threshold for one or multiple predictors is
crossed. The predictors are based on several diagnostic signals obtained for
observing physical quantities like plasma current, total plasma energy, locked
mode amplitude, radiated power and loop voltage signal. These signals carry
information about possible existence of commonly known disruption precursors.
Event detectors available on PETRA are not always directly related to
disruptions but there are several event detectors that can be used for monitoring
if plasma is moving towards the disruptive regime. In any case, if there is an
event detector alarm, the discharge is driven towards a safe termination in order
to protect the device from potential harm by means of a pre-programmed system

intervention.
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3.4.1.Locked Mode

Mode locking is one of the most used precursor in disruption prediction
research. The origin of the term Locked Mode lies in the theory of the
notoriously infamous Tearing Mode (TM) instability. Since their discovery by
Furth et al [36] in 1963, there has been significant advances in understanding of
its origins. The fundamental idea behind generation of a tearing mode instability
is appearance of a local perturbation in an otherwise stable system. Just like any
other perturbation, it can grow under suitable conditions and change the
trajectory of natural evolution of the system. In case of a magnetically confined
plasma with a finite conductivity, if there exist a magnetic flux surface for which
the field-aligned component of the wave vector of a helical perturbation vanishes,
tearing mode instability is developed, resulting in the appearance of a magnetic
island. However, it was shown by Reiman [37] that existence of such a
perturbation is a sufficient but not necessary condition for appearance of a
magnetic island and that a plasma boundary distortion can eventually simulate
a perturbation. While operating in the vicinity of stability thresholds, a small

distortion may suffice for the provocation of tearing modes.
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Figure 3.1: Illustration of origins of tearing modes [38]
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As can be seen in figure 3.1, a thin current sheet usually much smaller than
the system scale is created, which eventually breaks down into its characteristic
magnetic island. Field lines in opposite directions produce a current layer as
shown in 3.1 (a). These field lines, upon reconnection, end up modifying the
magnetic field topology and create alternate, shorter paths for energy transfer
between plasma layers (fig. 3.1 (b)). The magnetic island keeps growing until
reaching a saturation point, which is also a sign of complete destruction of current
sheets in the region where islands have been formed (fig. 3.1 (c¢)). The instability
does not only appear and subside after some time, instead, it starts growing with
a non-linear growth phase. In JET and ITER class tokamaks, the plasma is so
hot that a tearing mode instability is almost born in a nonlinear regime given
that the linear layers are very thin. Tearing modes are a type of macroscopic
instability, which affects the entire plasma volume.

When free energy in the current profile overcomes the pressure effects
which are contributing to maintaining the stability of the plasma, a “classical”
TM appears. To confine plasma particles, even inside a combined toroidal and
poloidal magnetic field, the ideal configuration is that a field line never returns
to a point it has passed through before. This, however, is an ideal scenario and
it is possible that a field line can return to the same point after n toroidal transits
as well as m poloidal transits. Magnetic flux surfaces for which this occurs are
termed as “rational surface” because the ratio of m to n is a rational number.
These rational surfaces are susceptible to appearance and eventual growth of
TMs and resultant magnetic islands.

With more experiments, even a NTM has been discovered where the free
energy is not derived from the plasma current profile but instead, from the
“bootstrap” current profile. Bootstrap current is a self-generated current,
originating in presence of a pressure gradient and benefitting from collisional
momentum transfer from the trapped particles to the passing particles,
amplifying the plasma current and eventually helping with the creation of
poloidal magnetic field. Deficit of bootstrap current at a rational surface and the
resultant magnetic island reduces pressure profile by means of providing shorter
paths for particle flow via magnetic reconnection and leads to further reduction
of the bootstrap current on that rational surface- evidently reinforcing the initial

perturbation.
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The immediate effect of tearing modes is degradation of plasma
confinement by means of flattening of pressure and temperature profiles. It also
restricts the highest achievable B value and hence, contributes towards the B
limit. The shortened path provided by a magnetic island allows for rapid heat
diffusion radially. In addition, the tearing mode itself starts rotating with the
plasma. This mode rotation imposes a radial magnetic field fluctuation at the
VV wall which is resistive and hence, results in induction of eddy currents in the

wall which lead to a new magnetic field that exerts additional force on the plasma

rotation.
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In general, when MHD modes grow in amplitudes, their rotation
frequency reduces, especially in tokamaks (fig 3.2). For tearing modes, even the
associated magnetic islands grow, generating magnetic field perturbations (Bpert)
outside the plasma and are observed to be rotating with a characteristic frequency
of 1-10 kHz. This rotation is seen as an oscillatory perturbation by the external
conductor (VV wall) and the resultant induced electric fields give rise to
fluctuating currents (jpert). The simultaneous presence of Bper and jpert gives rise
t0 jpert X Bpert forces in the conductor. Similar forces are induced in the plasma
which culminates in a momentum transfer from plasma to conductor, eventually
slowing down the plasma rotation- measurable in form of a reduction in rotation
frequency. The slowing down of rotation translates into an increased penetration

of perturbation fields into the conductor, amplifying the rate of momentum
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transfer from the plasma to the conductor. Upon reaching a certain value, the
magnetic islands come to rest- causing them to “lock” on the conductor.
Sometimes, after locking, the magnetic islands can still grow in amplitude,
reaching a saturation value at zero frequency, whereas in some cases, the
reduction rate of rotation frequency is low enough to provide enough time for the
islands to saturate even before mode locking. In either scenario, the cause of mode
locking is understood be of the form of a magnetic viscous drag in the external
conductor. A detailed mathematical and analytical account is given by Nave [39],
La Haye [40] and several other authors since mode locking is a recurring precursor
to many disruptions in JET and other tokamaks like DIII-D, ASDEX, JT-60 [41,
42, 43].

As is normally the case with any perturbation leading to perilous
instabilities, the non-linear growth plays a key role in the time to locking for a
given mode. Also crucial are the factors like initial seed island width, type of
plasma rotation and even the chunk of plasma mass involved in the momentum
exchange. These factors do not affect the physics of the phenomenon but can
alter the frequency evolution and time it takes for the mode to lock. The
conducting VV walls do play a role in the growth of the instability even though
it might seem counter-intuitive at high frequencies but as the frequency is
reduced, the growth rate of the mode accelerates, which in turn, reduces further
the frequency- hence creating a self-sustained drive for instability growth. The
island growth remains independent of the fact that the vessel wall can be
conducting.

The amplitude of locked mode is measured in JET in real time and is
used to set-up the protection scenario in PETRA. The default protection scenario
uses the locked mode amplitude signal as well as the locked mode amplitude
normalized to plasma current for raising mitigation alarm. The condition for
triggering an event alarm with only the locked mode amplitude signal is |ML| >
2 mT whereas the condition for locked mode normalized to plasma current is
|?|> 400 pT/A for 20 ms continuously. Several different predictors have been

P
designed based on the locked mode amplitude signal because mode locking is one

of the most common and most occurring disruption precursor. Apart from the
topic of this thesis, works done by Sias [44], Ferreira [45] etc. are some examples
of previous attempts to maximize the use of mode locking for disruption

prediction.
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3.4.2.Plasma Current

The plasma current is essential for a tokamak since it is used to generate
the poloidal magnetic field. Any sudden change in plasma current is reflected
straightaway in the magnetic field strength and eventually, in the plasma
confinement configuration. In the PETRA protection scenario, the time
derivative of plasma current over 2 ms (SHRTDIDT) and 16 ms (LONGDIDT)
is used to detect any sudden changes in the plasma current. The thresholds for
SHRTDIDT and LONGDIDT are 50 MA/s and 7 MA /s respectively.

3.4.3.Restraint Ring Loop Voltage

The restraint loop voltage detector detects magnetic fluctuations which
might be caused due to MHD activities or change in the plasma current. As
discussed in the thesis so far, in many cases, MHD activity is a principal
instigator of the chain of events that culminate in a disruption. Hence, it is
important to keep an eye on it. In the PETRA protection scenario, the combined
loop voltage and combined loop voltage normalized to plasma current is used for
detecting upcoming disruptions. The threshold values are 500 V? and 50 pV?/A?

for activation of assigned machine intervention response.

3.4.4.Radiated Energy Fraction

Fundamental basis of this kind of event detector lies in the
acknowledgement of the fact that if plasma is not dissipating certain amount of
heat via radiation, which means that it is depositing the energy directly onto the
PFCs, which is highly not desirable for obvious reasons. For starters, all this
additional heat-load can damage the PFC over time and lead to their erosion and
even sputtering, causing significant loss of plasma purity and once impurities
enter plasma, the contaminated plasma performance is degraded noticeably. Also,
PFCs for ITER as planned to be made of tungsten and the high Z impurities
radiate more power, causing excessive energy loss and lowering the Q value. In
JET, the PETRA experimental scenario allows the user to set up the machine
intervention in two different cases. If the ratio of radiated energy to input energy
is less than a threshold defined by the scientist in charge of the experiment, pre-
defined action is taken or it could even be set in terms of a minimum length of

time for which the ratio is continuously lesser than the defined threshold. The
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values of radiated energy and total input energy are calculated using real time
data.

3.4.5.Radiated Power

Another way to ascertain that the plasma is in a quiescent state is to
monitor the power radiated by it. In JET, diagnostics is set up to observe both
core and edge power radiation and it is aptly used for determining whether
plasma is approaching an undesired energy state or not. It is done via calculating
the ratio of core and edge radiated power and comparing it to a threshold value
and minimum duration of time for which it remains continuously above the
threshold. These values can be set for the given series of experiments and provide
flexibility as well as protection. The threshold value for both core and edge
radiated power above which the detector is activated is set by default at 8
kW /m?.

3.4.6.Beryllium Melting Detector

Ever since the decision to use JET for ITER preparation has been made,
many changes to JET have been introduced in order to be able to closely simulate
ITER conditions in terms of plasma environment. One such change was the
upgrade of JET first wall components from carbon material to ILW material
which mainly uses beryllium and tungsten. The combination of Be and W is
chosen taking into consideration various ways in which it can affect the plasma
performance. Still, operating the device on limits might sometime lead to the
plasma crossing the operational safe regime, which could result in overheating of
ILW PFCs. This overheating could provoke melting of Be tiles, introducing
impurity into the plasma as well as compromising the integrity of VV, making
the diagnostics placed around the melted area directly vulnerable to be affected
by the plasma. In order to detect such occurrences and protect the PFCs as well
as other machine components, a melting detector is installed in JET. The
detector is switched on as soon as total RF or NBI power goes past 100 kW and
it raises an alarm if beryllium is detected for more than 100 ms.

All the above mentioned predictors are based on the current
understanding of the physics of disruptions and also, known precursors. Constant
research and technological improvements keep adding novel physics and hence,
methods that can be used for designing more physics based predictors but as long
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3.5.

as there are unknown variables in the theory of disruptions, these predictors will
only be able to partially identify impending disruptions and that too, without
much anticipation since they rely on the processing and interpretation of real
data. Also worth highlighting is the fact that all the above mentioned detectors
have a set threshold value for each discharge and hence, are sometimes
susceptible to either falsely signaling a safe plasma behavior as dangerous or in
some cases, entirely missing an upcoming disruption. Both these scenarios are
counter-productive for a future commercial reactor class tokamak since the
ignition is energetically expensive so one cannot keep switching on and off the
tokamak on accounts of false alarms but one can also not afford to have a massive
disruption which could damage not only the PFCs but also, the structural
integrity of the mechanical housing of the reactor. Hence, an alternative approach
has been used lately, reliant on the data obtained using the diagnostics. However,
the combination of data results in a model too complicated to explain entirely
via physics. In the next section, we will have a quick overview of the working

principles of such detectors and also, some examples.

Data Based Detectors

The continuous technological improvement has introduced many new
ways to understand fusion plasmas. Better time resolution due to improved
processing speeds, extremely high image resolution at very fast frame-rates on
cameras etc. have not only provided us with a better “view” of the plasma but
also, the data generated by them is more reliable and contain more information.
Past couple decades have seen the rise of machine learning methods in every
science disciplines. Machine learning methods rely strongly on availability of
historical data to derive models based on data which can be used for forecasting
future occurrences of several events in either probabilistic or deterministic
manner depending on the method being used. Starting from early 2000s, several
disruption predictors using data based methods have been developed and a brief

account of some of those follows.

» Cannas et al. have published various articles [46, 47, 48, 49] using different

machine learning methods for disruption prediction at JET. Starting from a
simple state classifier between disruptive and non-disruptive based on an
artificial neural network (ANN). The results from such classification are

presented by means of Self Organizing Maps (SOM). Smaller database lead to
42



a rather modest success rate ~70% and as discussed previously, it is not
sufficient. Usage of a different method for learning, namely the non-linear
generative topographic map manifold learning was used in [49] to attempt to
determine disruption type (e.g. density limit disruption, B limit disruption etc.).
ASDEX Upgrade also served as a testing ground for several ANN based
disruption predictors. Pautasso et al. [50] achieved 85% success rate with a
slightly bigger database than that used by Cannas et al. during their studies on
JET. Morabito et al. [51] used fuzzy ANN approach to reach success rates as
high as 95%. These are all, a posteriori studies and hence, to benchmark the
performance of such systems, a simulated real time network test was carried
out in 2002 and as communicated by Pautasso et al. [52], a success rate of 79%
with 1% of false alarm rate is reported. Cannas et al. [53] also developed a novel
predictor for ASDEX Upgrade where dependency on the reproducibility of
discharge condition is observed regardless of promising results.

DIII-D can be termed as a pioneer in ANN usage for disruption prediction. As
early as in 1997, Wroblewski [54] attempted to develop a predictor for detecting
B limit disruptions. The goal was to obtain a threshold value for alarm triggering
and as commented while discussing JET and ASDEX, lack of sufficiently large
database was reflected in terms of high rate of false detection, reaching ~20%
while obtaining 90% success rates.

JT-60U was also used for ANN training efficiency check by Yoshino et al. [55].
Having trained the predictor using 12 disruptive and 6 non-disruptive
discharges, it was put to test against 300 disruptive and 1008 non-disruptive
discharges. A success rate better than 85% was obtained with an average
warning time of 50 ms before disruptions. In a work done in 2005 [56], a hybrid
trained network was put to test where previously trained disruption predictor
was fitted to a new network trained only using non-disruptive discharges, which
obtained success rates in excess of 75% for B limit disruption prediction.

With passing time and improvement in understanding of such predictors, an
inter-machine study was made between JET and ASDEX Upgrade by Windsor
[57] where a combined database of 185 disruptive discharges (89 from ASEDX
Upgrade and 96 from JET) was used. The ANN predictor was trained using
JET data and was tested using ASDEX Upgrade data and vice versa to check
flexibility and global extrapolation capacity of it. The results were encouraging

with success rates > 65% for both the training and testing scenarios. This study
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was a landmark in its own because it opened a new horizon for similar inter-
machine studies. Rea et al. [58, 59] have tried using random forest method for
disruption prediction during their inter-machine studies between DIII-D and
ALCATOR C-Mod.

Murari [60] came up with a method using fuzzy logic based on Classification
And Regression Trees (CART). The unique advantage CART has is that it
keeps partitioning the input space in each iteration keeping the nodes of the
tree as independent as possible from other nodes.

Deep learning Artificial Intelligence (AI) broke into limelight with beating the
human world champion in the videogame GO [61]. Later on, a similar Al engine
for chess also revolutionized how it was played. Hence, it was only natural that
deep learning based AI was developed for disruption prediction [62] and a cross
device architecture based on deep learning was also reported by Zhu et al. [63].
Jesis Vega has been one of the pioneering names when it comes to usage of
data driven methods for disruption prediction. Starting from data mining
techniques for retrieval of similar waveforms in massive fusion databases [64,
65], usage of Bayesian methods and support vector machines [66, 67], conformal
predictors [68, 69] etc. are some examples of work that has been done by him
and his coworkers on offline application of data-based techniques. Application
towards development of real time systems were also realized with the
introduction of ITER like wall in JET [70, 71, 72]. More recently, an overview
of the progress made in the past two decades was published in Nature Physics
[73].

The list can be very long, with different methods using reduction in
dimensionality, independent feature extraction etc. with the goal to eventually
obtain a machine independent predictor for wider usability and affordable scaling.
In the next chapter some examples of such predictors are discussed in detail
which were developed by the data analysis group headed by Jesis Vega at
CIEMAT.
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Chapter 4 — State of the Art

In this chapter, a detailed discussion is presented with regards to the advances
made in the field of disruption predictor development at the Laboratorio Nacional
de Fusién (LNF). Different predictors based on usage of different machine
learning methods are discussed alongside a brief overview of their performance
analysis. A concise introduction to some of the machine learning methods used
in development of these predictors is given in the beginning in order to help the

reader familiarize the terminology.

Majority of machine learning problems can be simplified by bringing
them down to a classification problem. Different shades of colors, fruits or
vegetables from the same class, species belonging to the same class etc. are some
examples. In case of fusion plasma discharge, when disruption prediction is the
task at hand, the problem can be translated to a binary classification problem
with two class labels: disruptive and non-disruptive. One of the most used
machine learning method at the heart of such classification problems is known as
Support Vector Machine (SVM), which falls under the category of supervised
learning. Supervised learning consists of training the machine using examples
with labels. Just like humans learn to distinguish between lemons and oranges
after being told at least once which one is an orange and which one is a lemon-
as if they were labelled. This is an example of supervised learning because prior
information was provided in terms of someone telling us which one is an orange
and which one is a lemon. Based on that information, certain properties are
associated with each of them. Their color, odor, texture etc. are features (they
can be scalars or vectors), characteristics that we use to recognize automatically
once we have seen enough examples of that. Similarly, a support vector machine
is a supervised learning technique where labels are provided in the training phase
of the algorithm. The ultimate goal is to be able to assign a class label
automatically in future after having seen a wide variety of features for each class.
As per Noble [74], the most essential concepts for a working understanding of

SVM classification are:

I. The separating hyperplane: Hyperplane is the general term for a
straight line in a multi-dimensional space. For a linearly separable

problem, this hyperplane is a straight line separating two different clusters
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IIT.

IV.

of objects whereas for a multi-dimensional problem, it is a hyperplane. In
a nutshell, it can be reduced to a problem of pattern recognition based on
features.

The maximum-margin hyperplane: There exist different
machine learning methods that use a separation boundary for classification
problems. SVM is different to others by virtue of the process by which the
separating hyperplane is selected because there can be infinite lines passing
through one single point but in SVM, the line for which the distance
between the line and the nearest feature is maximum for all the classes is
chosen. This way, SVM intrinsically possesses a very high possibility for
correct classification even for future objects. An important factor for this
to work at its maximum potential though, is that the data used to obtain
the hyperplane should belong the same distribution as the one whose
classification is at hand. Also, it is important that the feature extraction
procedure is unchanged during training and testing, otherwise, the

features might carry artifacts that can affect the performance of the SVM.

The soft margin: There might be instances where an object cannot
be classified as belonging to one single class due to many different reasons.
Ideally, SVM should be able to tackle such exceptional occurrences but
there is also a possibility to introduce a soft margin, which essentially
allows some data points to push through the margin of separating
hyperplane without altering the final result. It is also important to
recognize that the definition of such a soft margin is a very complicated
task and must be carried out with utmost caution in order to reduce
existing misclassification without paying the price of eventual
misclassification of otherwise correctly classified objects.

The kernel function: Even though dimensionality reduction is
considered to be helpful for classification problems, there may be cases
where it is actually hindering the determination of a separation hyperplane
for SVM based classification. Hence, a kernel function is implemented to
add n new dimensions to the data- where n can be infinite. This
transformation can eventually result in reduction or even removal of the
problems related to classification. However, the choice of kernel function
is not straightforward and needs a lot of experience and intuition towards

the data to be classified. One can prove analytically that if the data set
46



has consistent labels (meaning that no identical objects are assigned two
different labels), a kernel function exists which will allow the data to be
linearly separated.
Before proceeding further, it is important to mention the JET Protection
System (JPS) [75]- a real time system used for producing disruption alarms. JPS
mostly relied on elevated values of mode locked signal for alarm triggering. The
methods discussed in following sections were designed with an objective of
providing better alarm triggers compared to the JPS. Recently JPS was replaced
by PetraMitl and PetraMit2 for device protection.

4.1. Advanced Predictor Of DISruptions

APODIS is not a physics based system, it rather uses data science to
come up with a functionally viable disruption predictions. Starting from as many
as 13 diagnostic signals (as listed in table 4.1), throughout the process of
performance improvement, APODIS ended up with 7 signals (those in bold in
table 4.1) which are used in the real time version.

A feature extraction scheme as described in [76] was employed to obtain
features at every 32 ms in order to achieve better detection rates. It is very
important to highlight that not all the signals were available at a uniform
sampling rate and hence, as a part of pre-processing, a common sampling rate
was established and all the signals were brought to the same. Several different
predictors, based on SVMs were trained focusing on different time intervals prior
to disruptions. Based on the outputs of those SVMs, a decision function (DF)
was used. The objective of the DF is to make a decision regarding alarm trigger.
Hence, the “prototype” APODIS worked on a double layer SVM based
combination of predictors. One criterion, essential while evaluating the viability
of such systems, is the amount of computational time they require for training.
In case of this prototype, the first layer required a computational time of ~1h on
a Pentium 4 3.2 GHz CPU using Matlab. The critical layer, the one containing
DF required ~10h for training. These timings can be further reduced using high
performance computing and hence, make this prototype a viable option.

The training was carried out using JET discharges (a mix of disruptive
and non-disruptive discharges, ranging from Jet Pulse Number (JPN) 42815-
57346). For testing purposes, discharges up to C14 have been used and no

performance degradation has been observed. Structural modifications after C14
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resulting in replacement of the divertor and bolometric diagnostic reflected a
slight degradation in the performance from C15 till C19. This predictor was
tested in a simulated environment whose in depth analysis and results are
presented by Ratta et al. [77].

Signal Name Units

Plasma Current (Ip) A
Poloidal Beta (Bro)

Time derivative of Poloidal Beta (%) s
Mode lock amplitude (ML) T
Edge safety factor (qs)

Time derivative of edge safety factor (%) st
Total input power (Pror) W
Plasma internal inductance (Linserna)

Time derivative of plasma internal inductance (%) st
Plasma vertical centroid position (Zplasma) m
Plasma density (n.) m”
Time derivative of stored diamagnetic energy (%) W
Net power (Pror - Prap) W

Table 4.1: The original list of signals considered for APODIS, the symbols in brackets next to

the signal names are used in JET communications.

When the JET went an overhaul for preparation for ITER relevant
experiments, the PFC wall was changed and ILW was implemented. Using the
learnings of the prototype version of APODIS and its consequent performance
degradation after JET divertor replacement as well as bolometric diagnostic
upgrade, several changes were made prior to real time implementation of
APODIS. Apart from inclusion of exhaustive data pre-processing for outlier
removal and usage of high performance computing, the signal representations,
the signals, the amount of data considered for training and real time applicability
were the improvements made to the prototype. Studies revealed [78] that
different signal representations combination in APODIS provides the possibility
to reduce the number of signals required and as a result, two signal
representations per window were used: mainly the standard deviation of the
Fourier spectrum (without the continuous component) and the mean value. In

terms of real time implementation, the moment in a JET discharge the plasma
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current supersedes a certain threshold value (presently 1 MA), APODIS starts
forming a feature vector x every 32 ms. As mentioned, using the two signal
representations being mean value and Fourier spectrum standard deviation for 7
signals (table 4.2), a feature vector x € R*. Upon completion of a 32 ms time
window at a time instance t, APODIS uses the three most recent feature vectors
(x(t — 64),x(t — 32),x(t)) as inputs for three SVM based classifiers M3, M2 and
M1 respectively (see fig. 4.1).

Signal Name Units
Plasma Current (Ip) A
Mode lock amplitude (ML) T
Total input power (Pror) W

Plasma internal inductance (LI)

Plasma density (ne) m3
Time derivative of stored diamagnetic energy (%) W
Net power (Pror - Prap) W

Table 4.2: Final list of signals used in APODIS.

The outputs from M3, M2 and M1 are classified as disruptive or non-
disruptive depending on the properties of the features and there may be
occurrences where not all three output are in agreement with one another. Hence,
the DF based on SVM in the second layer eventually decides the prediction value
for the given discharge at time instance ¢. Detailed results of APODIS

performance on ILW discharges are summarized by Vega [70].

As shown by Moreno et al [79], APODIS relies highly on the mode lock
amplitude and plasma internal inductance signal. The remaining signals are also
essential but any alteration in those signals by means of noise or calibration
artifacts are not reflected as a grave degradation of performance. Also, the use of
a sliding window method to test APODIS performance for different temporal
resolutions without actual resampling of original data shows that the higher the
temporal resolution, the better the performance even in terms of improvements

in warning times as shown in the same article.
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Figure 4.1: APODIS architecture implemented in the JET RTN.

4.2. Approximation from Scratch

A large number of machine learning and data driven methods for
prediction and classification strongly rely on the vastness of the available
historical data to learn from it before making predictions. However, ITER will
not have the luxury of such a database for training disruption predictors mainly
because it is not designed to withstand disruptions. According to Strait [80] the
maximum number of unmitigated disruptions in ITER is very limited at high
current scenarios (Ip > 8.4 MA). Lehnen [81] provides an insightful take on
possible disruption rates for different operational scenarios in ITER depending
on the successful execution of the tasks (fig 4.2).

A very important strategy that can be adapted to prevent damages from
disruptions for ITER is to develop predictors from scratch. The core idea in such
an approach is usually to carefully select diagnostics signals and investigate
relations between them to identify an impending disruption. The physics
interpretation is desirable but not compulsory. One such predictor was related to
APODIS. The APODIS performance during the first three ILW campaigns was
very satisfactory. Good detection rates, no apparent “ageing” and reliable

detections caused APODIS to be chosen for predictions from scratch. Here the
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word “ageing” is related to the degradation of performance of a predictor when

used in environment drastically different than the one used for training.
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Figure 4.2: A probable scenario of permissible disruption rate at ITER [81]

The most important criterion in development of a predictor from scratch
is the chronology of discharges- the system needs to learn on the go which
behavior caused disruption. So, whenever a disruption occurred, re-training was
carried out to incorporate new knowledge to the predictor for future predictions.
Different types of training datasets were considered in order to train the predictor
for different scenarios. As shown by De Vries [82], the number of disruptive and
non-disruptive discharges is rather unbalanced considering only unintentional
disruptions. High performance computing (HPC) facility available at CIEMAT,
containing 240 nodes of 2 Quad-Core Xeon processors was used to train models
based on APODIS. A total of 1035 non disruptive and 201 disruptive discharges
from ILW campaigns at JET were used for training and testing the models. All
the discharges with incomplete or unreliable data were excluded from the
database. Careful selection of signals was made to maximize the learning

parameters for the models without overloading the predictor with information.
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Figure 4.3: Disruption prediction results from scratch [83]

As can be seen figure 4.3, a model, trained from scratch is good enough
to achieve very high success rates while maintaining a very low false alarm rate.
The expanded signal set used 12 carefully chosen plasma diagnostics signals
whereas the reduced signal sets used only 7 of the 12 signals utilized by the
expanded set. Here it is important to point out the sudden fall of success rate in
figure 4.3. It is due to the fact that for model 200, there is only 1 disruptive
discharge in the test set and hence, if it is missed, the success rate falls to 0%.
This raises an important question regarding re-training, highlighting the fact that
not every occurrence of disruption mandates it since if the disruption is detected,
it means that the model does have the necessary knowledge to detect similar
disruptions and only the ones missed have new information that need
incorporation in the knowledge pool. Such a deduction is very useful to avoid
unnecessary time loss in re-trainings and swift employment of the predictor. A
detailed account of this predictor is given by Dormido-Canto et al. [83].

The predictor from scratch based on APODIS managed to achieve
success rate of 93.5% and false alarm rate of 2.3% after using only 40 disruptions
to train the model. This is still too high a number for ITER and future reactor
class tokamaks because while operating at high performance scenarios,
unmitigated disruptions can be fatal. Another approach based on fault detection
and isolation (FDI) techniques was also devised and deployed in AUG [84] but

higher false alarm rates left more to desire. A predictor based on Venn prediction
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framework was proposed and reported by Vega et al. [85] providing probabilistic
predictions, qualified with a probability interval to interpret the efficiency of the
predictions. Such auto-qualification of predictions made by a predictor put them
in a category known as conformal predictor, formulized by Vovk and
Gammerman [86].

Conformal predictors work differently when compared to normal
machine learning predictors. Instead of using a fraction of the available database
to train itself, a conformal predictor makes predictions sequentially and can be
used either in batch mode or online mode. In other words, the induction derived
from the training does not need to go through the model unlike a normal
classifier, it can straightaway be translated to a prediction and qualified for its
efficiency. This makes it fit perfectly in the requirements of predictions from
scratch. Each new prediction made by a Venn predictor is based on all the
previous samples. The only assumption made in the formulation of the Venn
predictor is that the information to be used satisfies the independent and
identically distributed data (IID) hypothesis.

STANDARD PREDICTOR

[ TRAINING

CONFORMAL
TRAINING PREDICTION
PREDICTOR

Figure 4.4: A comparison between standard and conformal predictors.

—/

PREDICTION]

Different Venn machines can use different taxonomies to classify samples
into different groups. For multiclass classification, neural networks as well as
SVMs and even logistic regression have been used. The Venn predictor discussed
in [85] was based on the nearest centroid taxonomy (NCT) given the fact that
the problem could be tackled in terms of a binary classification problem and the

information about disruptivity can be stored in centroids of disruptive and non-
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disruptive type. This meant that the NCT Venn taxonomy number is 2 where
the label to a sample was assigned similar to its nearest centroid. The metric for
distance was chosen to be Euclidean. Once a taxonomy was chosen, probabilities
were calculated for each sample belonging to each class and at the end, labels
were assigned with the condition that the label with highest average probability
interval is the prediction. The probability interval was given by the minimum

and maximum probability for each label for the given sample.

4.3. Anomaly Detection

Continuing with the theme of the chapter, continuous learning and
sequential data observation as well as decision making remains the principal focus
of the next type that we discuss- predictor based on anomaly detection. The
fundamental assumption for anomaly detection is the data be compliant to the
I[ID hypothesis because this would guarantee any anomaly detection to be
associated with interesting time-dependent phenomenon useful for prediction of
disruptions. This system could also be employed in a predictor from scratch
framework, where the predictor acquires new knowledge with each new discharge-
be it disruptive or non-disruptive. Especially, non-disruptive discharges in
different experimental scenarios could demonstrate different classes of non-
disruptive plasma behavior, essential for a seamless performance. As for
disruptions, any detected anomaly must be associated with a precursor to assure
that the false alarms are minimized and interesting plasma scenarios are obtained
for better understanding. For starters, the most reliable precursor- locked mode
amplitude was chosen to test a predictor based on outlier detection (PBOD, later
known as Single signal Predictor based on Anomaly Detection -SPAD). Here the
reference to term outlier points to the fact that any anomalous behavior observed
in the data stream that has little to no relevance of previous samples of the data
stream is most likely to appear rather far away from an otherwise closely grouped
cluster of samples in the parameter space. Several points taken into consideration
while designing the predictors are as follows:

i. The sequential data must be read only once.

ii. The time delay between a true alarm and its detection is minimal.
iii. Number of false and missed alarms remain negligible.
iv. Handling of the data streams be highly efficient from a computational

point of view in order to facilitate real-time implementation.
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Based on experiences with APODIS, the feature selection process for
SPAD was carried in a similar way to that for APODIS. A time window of 32
ms was chosen to extract features from the ML signal, which is usually sampled
at 500 Samples/s- producing 32 samples per time window to be processed. The
information in those 32 samples was further reduced in terms of fewer
components using the Haar wavelet transform. Additionally, a sliding window
mechanism was used which so that every new sample was grouped together with
previous 31 samples in order to assure a continuous sequential feature flow. A
detailed account of the model as well as results obtained by SPAD is given by
Vega et al. [87].

The PBOD approach provided an encouraging result, which was
developed further with more sophisticated design capable enough for real-time
application. SPAD was designed specifically for a Multithreaded Application
Real-Time executor (MARTe) framework- originally developed for JET real-time
applications but now extended to be used in fusion experiments across the globe
like COMPASS, RFX etc. The SPAD algorithm aimed at detection of anomalies
in the data distribution following the approach adopted in PBOD- where a 32
samples long feature vector was decomposed using the 4" level Haar wavelet
transform and the resultant decomposition coefficients were used as feature
vectors. This way, the information in both time and frequency domain is put to
use for anomaly detection. As can be seen in figure 4.5, non-disruptive and
disruptive behavior is different and deviation from non-disruptive behavior is
clearly visible. Presence of high covariance resulted in Mahalanobis distance from
the centroid of the cluster representing non-disruptive behavior being used to
separate the outliers in an effective manner. Qualification of outliers was carried
out by means of calculation of an outlier factor based on the mean and standard
deviation of the Mahalanobis distance during the discharge. A threshold value of
outlier factor was chosen for alarm triggering.

A quick overview of MARTe applications is necessary since SPAD is
based on it. Any MARTe application consists of a set of generic application
modules (GAMs) which are connected via the dynamic data buffer (DDB) such
that each GAM is capable of reading and writing an arbitrary number of data
from the DDB. Task specific GAMs are also used but in general, GAMs are
executed inside processing threads managed by the real-time scheduler. GAMs in

separate threads can communicate and synchronize if needed and configured to
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do so. The biggest benefit of such an architecture is the possibility to modularize
an algorithm so that if needed, the intermediate steps of the algorithm can be
easily used by other applications, reducing the redundancy of data processing

while providing efficient real-time capabilities. Figure 4.6 shows the structure of

SPAD architecture in MARTe.
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Figure 4.5: Comparison of the Haar wavelet transformation coefficients for a non-disruptive
discharge (a) and a disruptive discharge (b). For both the discharges, the non-disruptive
behavior is represented by a concise clustering of the feature vectors and the appearance of

disruptive tendency is visible in (b) in terms of presence of outliers.
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Figure 4.6: Diagram of SPAD implementation in MARTe. GAMs are executed in order
from top to bottom [88].
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A detailed account of implementation of SPAD in JET real-time network
as well the results obtained from JET campaigns C28-C34 are given by
Esquembri et al [88]. Different sizes of feature vectors were tested to verify if it
was a factor in the performance of SPAD. Overall, SPAD was found to be better
compared to APODIS and ML predictor based on a hard threshold. Using only
one signal, the execution time is also low so that in case of requirement of

immediate action, it can be trusted fully.
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Chapter 5 — The Centroid Method Predictor

In this chapter, a detailed discussion is presented of the Centroid Method (CM)
predictor, which is at the core of this work. Some examples of implementation of

the CM predictor to detect upcoming disruptions are also provided.

5.1. Centroid Method

Having seen the advantages and shortcomings of the different approaches
for disruption predictor a simplistic yet efficient method was designed in recent
years [89]. The method was designed keeping in mind the physics interpretation
requirement as well as reduced complexity for easier implementation to new
devices, regardless of their size and working principle. One of the most exploited
disruption precursors, Mode Lock Amplitude, is used to guarantee a reliable
performance and efficiency, especially for disruption mitigation purposes. A
multi-dimensional parameter space C € R™, with each dimension being a physics
related quantity can be considered. Using two simple rules, a global method for

defining generic predictors can be summarized:

1. The knowledge of disruptive and non-disruptive physics in € can be

represented by individual points Cp and Cxp as shown in figure 5.1.

2. Throughout a discharge, the plasma state at time t can be represented
by a point P(xi1, X2, .., xm) € C. The plasma state is recognized to be
disruptive or non-disruptive based on the Euclidean distance of P from Cp
and Cyp. If the Euclidean distance of P from Cp (dp¢,) is shorter compared
to the Euclidean distance of P from Cxp (dpc,,), then the discharge is
categorized to be in a disruptive state whereas for the contrary scenario,
the discharge is categorized to be in a non-disruptive state. The consistency
in reasoning is drawn from the fact that the physics understanding of the
plasma state is represented by Cp and Cxp and hence, the Euclidean

distance provides a metric for similarity in behavior in the parameter space.
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Figure 5.1. A general predictor can be based on the well-known nearest centroid technique.
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From m physics quantities, Cp and Cxp are centroids, which condense the relevant information

about disruptive and non-disruptive behaviors, respectively, into two points in C .

Points Cp(di,ds,...,dm) and Cxp(ci,C,...,cm) are the respective centroids of
the disruptive and non-disruptive examples in the parameter space C. Hence, the
method is termed as the Centroid Method (CM) and the predictor is called CM
predictor. Mathematically speaking, if a training dataset for each disruptive and
non-disruptive type examples is given, then the coordinates of Cp and Cyp are
obtained in the following manner. If the disruptive training dataset ¥ and non-

disruptive training dataset X is defined as:
Y(Wro¥20- o Ymi)€eCi=1,...,np
Xi()(l,i»)(z,i» ...,)(m,i)e C,i=1,..,nyp
Cp and Cxp are given by:
(di,doyenydm) = mean(Wy 1, Yo i Ymi) i = 1,...,mp
(€1,C2yeesCm) = mean(Xq i, X2,ir++-» Xm,i) 8 = 1,..., Nyp

where mean(O) returns a vector comprised of the average value of each column

of ¥ and X with ¥;; or x;; and j=1,..,m.

A disruptive behavior is attributed to a point P(xi, X, ..., Xm) using such

a predictor when the following condition is fulfilled.
dP,CD < dP,CND
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where dp ¢ and dp ¢, being the Euclidean distances, are defined by:
dP,CD \/Z 1(xl
dpcyp = \/2111(%' —¢)?

resulting in,

\/Z 1(xl_d)2 <\/Z 1(xl_cl)

which can be simplified using simple algebra to arrive at a condition for disruptive

behavior as:

Zidi —c).x > i(d% —c?) D
i=1

i=1
Recurring to the fact that for each independent training set, the centroid

coordinates are unique, the equation above is linear in x; as follows:

m
ZAi.xi > K )
i=1

where A; i=1,..m and K are constants, determined during the centroid

computation process as follows.
Ai = 2. (dl - Ci)
K =32d} —c)

Equation 2 summarizes the formulation of a very general disruption predictor

that can be implemented in a simple way.

To compare the predictor represented by equation 2 with a machine
learning predictor, several key points as followed must be taken into

consideration.

i. The criterion for assigning classification label is very simple, shortest
distance to a centroid. There are no underlying factors like layers, neurons,
kernels, leaves. The absence of these factors also remove the dependency on
otherwise time consuming optimization algorithms for training.
Improvements in terms of re-trainings can be made in a quick and efficient
ways if new examples are added to the training set. In a nutshell, equation
2 is extremely use friendly.
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ii.  Linearity of equation 2 in physics quantities translates in reliable physics
interpretation compared to predictors relying on several different signals
resulting in a non-linear model.

iili. Continuous recognition of plasma behavior can be achieved with a
resolution of the order of 100 ps since the only mathematical operations to
be executed are a product, sum and comparison after obtaining coordinates
of points Pi(x1, X2, ... , Xm) and plug them in equation 2.

iv. Equation 2 presents a case for multiple uses in terms of mitigation as
well as avoidance of disruptions. One only needs to choose precursors for
specific application and the corresponding signal(s) can be added to the
parameter space C. This flexibility is a result of global validity of equation
2- a feature most desired for disruption predictors.

v. The cost of computation is another salient feature of a predictor based
on equation 2. The classification criterion being a linear inequality provides
prediction efficiency even for a higher dimensionality (larger values of m)
at minimal computational cost, making their real time implementation a
much easier task compared to multi-layer and multi-system predictors. In
JET, for example, the real-time network has 2 ms of characteristic time,

which is sufficiently long for making predictions with equation 2.

Such a framework is very important for designing simple predictors with
physics interpretation capability because the ultimate goal is not only to predict
upcoming disruptions reliably, but also, to understand their causes. As a field
test, a disruption predictor based on equation 2 was implemented in the JET

real-time network under following specifications.

a. To facilitate physics interpretation of the predictions, usage of quantities
in time domain was made. Avoiding the usage of frequency domain serves
twin purpose in terms of easier physics basis as well as getting around the
need of additional data processing in time windows with a limited sample
size.

b. Lack of high performance (> 95% success rate and < 5% false alarm rate
simultaneously for ITER) predictors and these predictors not being linear
as well asserts another challenge to find the simplest linear predictor

adhering to ITER requirements.
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c. The dimensionality of the predictor was also chosen very carefully. It
could be argued that the simplest linear predictor could be achieved by
using only one dimension in equation 2. Consequently, that would lead to
a single threshold value, an approach already used in JET and proven
time and again to be not quite useful in achieving a performance we aim
for. The principal reason for non-existence of an optimized threshold for
JET discharges is the lack of a “universal” threshold value, valid for all
types of experimental discharges. In some cases, even non-disruptive
discharges surpass the preset threshold without disrupting, and hence, it
has not been possible yet to obtain one single threshold value. For the one

dimensional case, equation 2 gets reduced to:
A xg > K
which in its analytical form can be written as follows,
2.(dy — ¢1).x; > (df — ¢f)

and with further simplification, we obtain the equation for one dimensional

predictor

X > (dq ‘2|‘ c1) 3)

which is represented graphically in the figure 5.2 as shown below:

@, % @

Figure 5.2: Here the green circle would represent non-disruptive centroid ¢, and the red

circle would represent disruptive centroid d, with X being the point defined by x; in
equation 3. In a nutshell, if a plasma state point has co-ordinate value higher than the
average of disruptive and non-disruptive centroid value, the plasma will be characterized

to be in a disruptive state and non-disruptive otherwise and hence, a threshold value.

The next attempt would lead to usage of two dimensional parameter space

and with a classification condition of the form:

Ai.x1 +4,.x, > K
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which takes the following form when we use the analytical forms of all

the constants
2.(dy —cp).x; +2.(dy — ). %y > (d2 — c?) + (d3 — ¢2)

with further simplification, the equation to arrive at the condition for

disruptivity for a plasma point x» reduces to:

(dy —¢cy) (d% + d% - C12 - C%)
—_—X
(dy —c3) ! 2-(dy—c3)

(4)

X, > —

where x5 is the point of plasma representing the actual state of plasma and
x; is the plasma state point for the previous time instance.

d. Once the initial values of A; A, and K are found, a one-time
optimization process was carried out to obtain the best suitable values for
a global predictor such that no further optimization is required unless
there are changes made to the measurement conditions (i.e. improvement
of diagnostics, changes in the vessel etc.).

e. Based on several studies made over time [35, 82], mode locking is one of
the most repetitive precursor to disruptions and the focus of the predictor
being disruption mitigation. As a first step, the locked mode amplitude

(ML) signal was chosen as the physical quantity for the predictor.

Based on above mentioned specification, for a two dimensional parameter
space, the second signal to be chosen should also be related directly to physics of
mode locking. However, if the interdependence of the two chosen signals is not
simple enough to translate into straightforward physics interpretation, the option
to totally avoid the second signal could also be employed. This would render the
predictor independent of practical issues related to a second signal like
availability, sampling rate, reliability etc. and improve the robustness. In order
to test the possibility, the ML signal itself was mapped in a two dimensional
feature space and used in the predictor based on studies reported in [89, 90, 91].
Consecutive samples of the ML signal were used to define the two dimensional
parameter space and figure 5.3 shows how the consecutive samples from ML

signal are used to define plasma state points in the parameter space. Assuming
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the sampling period of the ML signal to be 7, the two consecutive samples x(t-

7) and x(t) would define a plasma state point P(x(t- 1), x(t)).

Having defined the two dimensional feature space, the next step was to
compute the coordinates of disruptive and non-disruptive centroids Cp and Cxp
respectively. In consistency with the procedure elaborated earlier in the section,

if the training datasets of disruptive and non-disruptive examples are:

VY(W10,¥2:)eC,i=1,...,np and
Xi (X1, X2,:)€ C,i =1, ..., npyp

the coordinates of Cp and Cxp are given by:

Cxo(cr,¢2)= mean(xy, X2:) i = 1,...,nyp and
CD(dz,dg): mean(djl,i' wz,i)v i=1,..,np
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Figure 5.3: ML amplitudes in black, red, cyan, green and purple diamonds are points P1, P2,
P3, P4 and P5, respectively, in then feature space. X(t) are the ML amplitudes (in T).
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A quick description of how the examples of disruptive and non-disruptive
examples of each individual discharge are obtained is also important for the
completeness of explanation. For a non-disruptive discharge, the time interval
for training is determined based on the values of plasma current, that is, the
interval begins when the plasma current surpasses a value (say Lyat) for the first
time and finishes when the plasma current goes below a different value (say Lsnis)
for the last time. For the given predictor, the values chosen were: Ly = 0.9 MA
and I = 0.7 MA.

In case of a disruptive discharge, the procedure is slightly different
largely owing to the fact that the appearance of disruption precursors is not
consistent in terms of the time between their appearance and time of disruption
because different instabilities grow on different timescales and it is quite possible
that the same instability in two similar discharges may grow at different growth
rates since the growth rates are dependent on factors that might not be identical
even for similar discharges.

The difficulty was partially eased out since the main purpose of the
predictor to be designed was disruption prediction for mitigation and hence, it
was reasonable to choose the feature vectors closer to the disruption in order to
capture the essential characteristics of the disruptivity of each discharge. Care
was also taken that only one example per discharge was considered in C and that
it was as close as possible to the disruption. The example to be chosen must
comprise of consecutive samples of features nearest and prior to the disruption
with a positive difference of their ordinates. The reason behind such a stringent
criterion is the fact that appearance of the chosen precursor is generally
associated with and identified by a monotonous increment in the amplitude of
the corresponding diagnostic signal.

Here it is also crucial to define the meaning of the term training. Training
in this case means computation of centroids, which is carried out after feature
vectors for all the discharges selected as representative cases for different type of
disruptive and non-disruptive discharges depending on the experimental scenario
they belong to; because different plasma configurations lead to different
precursors. All the discharges used to train this predictor were executed after the
upgrade of JET first wall to facilitate ILW conditions as mentioned in chapter 1.
The time of disruption is chosen to be the time of beginning of the current

quench. Only filtering criterion in terms of selection of disruptive discharges for
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training and test was the disruption to have occurred naturally and not provoked
intentionally.

The predictor based on the centroid method presented in this thesis is
tested with the mode lock amplitude normalized to plasma current (ML/Ip). As
explained in detail in chapter 2, the ML/Ip is already used in JET as a part of
the protection scenario in PETRA and the disruption alarm is triggered once it
crosses a threshold value, typically set between 0.4-0.52 mT MA™ depending on
the experimental scenario [91]. Worth highlighting is the fact that both ML and
Ir are two routinely produced signals in tokamaks and hence, the usage of such

a predictor is very appealing to the community.

Type/use Number of Range
discharges

Disruptive/Training 113 80181-82504
SEP 2011-MAR 2012

Non-Disruptive/Training 1397 80176-82550
SEP 2011-MAR 2012

Disruptive/Test 277 82569-92410
MAR 2012- NOV 2016

Non-Disruptive/Test 3027 82552-92504

MAR 2012- NOV 2016

Table 5.1: Datasets of disruptive and non-disruptive discharges to train and test a predictor

based on centroids in JET.
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Figure 5.4: Black points with error bars are the centroids. Blue and red points are non-

disruptive and disruptive examples of individual discharges, respectively.
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Using the discharges from table 5.1, disruptive and non-disruptive
centroids were obtained and are shown in the figure 5.4. The centroids are
demonstrated for the mode lock normalized to plasma current. The sampling
period of the ML/IP signal is T = 0.002s. The dashed straight line is the
separation line between disruptive and non-disruptive behaviors. The dashed line
in the same figure represents the decision boundary, separating disruptive and
non-disruptive zone in the parameter space. If we look at this model, it could be
compared to an SVM based model where the task at hand is to label the plasma
state at a time instance t to be either disruptive or non-disruptive- in other
words, a binary classification problem. As was discussed briefly in the beginning
of chapter 4, one of the key aspect of an SVM based classifier is the separation
hyperplane and our parameter space being two dimensional, we obtain a straight
line, represented by the dotted line in figure 5.4. The grouping of disruptive and
non-disruptive centroids is well separated among themselves but the clustering is

rather compact among the same type of examples.
Cp= (d; £ std xp, d»+ std yp), disruptive centroid
Cxp= (¢1 £ std xxp, 2% std yxp), non-disruptive centroid
with std(O) representing standard deviation
(std xp, std yp) = std(W 1, ¥2:),i =1,...,np
(std xxp, std yxp) = std(¥1.6X2:),i = 1,...,nnp

High degree of compactness in the non-disruptive centroids cluster means
that the effect of error bars in the determination of the separation hyperplane is
negligible and that the individual centroids for each test discharge are similar to
one another, mathematically, std xxp = std yxp = 0. This, however, is not the
case for disruptive centroids because there is considerable amount of spread in
the cluster of disruptive centroids. Defining a square shaped region of interest
using the values of error bars in each dimension, one can optimize and select the
best disruptive centroid for the given set of training discharges. As shown in
figure 5.5, 80 additional disruptive centroids were obtained. This exercise was
important to correctly obtain the characteristic parameters of the separation
hyperplane- mainly the slope and the intercept. In this case the hyperplane being
a straight line in two dimensional feature space. 81 different centroids were

considered, leading to testing of corresponding 81 different models and for
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qualification of the best model, receiver operation characteristics (ROC) analysis
was utilized. ROC analysis provides a performance analysis curve for different
models based on identical datasets for training and testing by means of plotting
the success rates versus their corresponding false alarm rates. The model whose
corresponding coordinates in the ROC curve are closest to (0,100) is chosen as
the most qualified model.

The ROC curve obtained from testing all 81 models corresponding to the
disruptive centroid in figure 5.5 is presented in figure 5.6. The optimal model
according to the ROC curve corresponds to the disruptive centroid with
coordinates (d; — 0.75std xp, dz- std yp). Results of success and false alarm rates
corresponding to some of the 81 centroids tested for selection of best centroid are

given below in table 5.2.

Model Success rate  False alarm rate
label (%) (%)
1 95.73 0.30
0.75 96.44 0.36
0.5 97.51 0.46
0.25 97.86 0.66
0 98.58 0.99
-0.25 99.29 1.35
-0.5 99.29 1.95
-0.75 99.29 3.73
-1 99.29 5.12

Table 5.2: Results of the process of optimization of disruptive centroid for JET. Here the model
label is the value multiplied to the standard deviation of respective x and y co-ordinates of the

base centroid obtained by taking global mean of the set of training discharges.

In terms of implementation, the CM predictor model in the JET RTN
on PETRA is given by:

X (t) = —0.6680 - X (t — 0.002) + 7.2068 x 101
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with X(t) being ML(t)/Ip(t), 0.002s is the sampling period of the signals used.
ML being measured by the magnetic diagnostics, it is given in T and Ip in A.
Provided the sampling period is the same as in the model, the presence of

disruptive behavior is detected in case
X (t) > —0.6680 - X (t — 0.002) + 7.2068 x 10~
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Figure 5.5: Apart from the initial disruptive centroid Cp (d;, ds), 80 new disruptive centroids
are obtained with positive/negative increments of its coordinates in relation to the error bars in

each dimension. Resultant 81 centroids are the red points.
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The CM predictor has more features, like an SVM based binary
classification predictor. It removes dependence of the performance from a factor
as trivial as temporal resolution of a diagnostic system. Not only that, but also,
use of a soft margin as discussed in the early part of chapter 4 has been

implemented as an additional feature.

The essence of CM predictor can be summarized via the fact that the
predictions are made if abrupt changes are detected in the ratio of ML/Ip. A
sudden increment in the ML amplitude while Ir being similar to the previous
sample is a sign of mode rotation being slowing down and the mode locking on
the VV wall, which is interpreted as disruptive behavior whereas a sudden drop
in Ip value while ML amplitude is similar to the previous sample can also bump
the resultant value of ML/Ip. A third possibility, where the amplitudes of both
ML and Ip increase or decrease respectively at the same instance of time, could
result in the value of ML/Ip not changing drastically, and hence, maintain around
a hypothetical diagonal line X=Y in the feature space. Such behavior cannot be
considered disruptive even if the corresponding plasma state points P(t) appear
in the disruptive zone because during the training phase, such behavior is seen
to correspond non-disruptive plasma state. However, as in the case of an SVM
soft margin, a limit must be established in order to maintain the performance of

the CM predictor without introducing any untoward bias.
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Figure 5.7: An illustration of the parameter space used in the analysis.
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The green and red triangles in figure 5.7 are also highlighting the
independence of CM predictor on manually set thresholds by comparing with the
NRMLOCA predictor, constituent of the PETRA protection scenario using the
same ML/Ip signal for disruption alarm triggering. The threshold for NRMLOCA
at X(t)=4x10" T/A would result in false alarm triggering if a point P(t)
appeared in the green triangle. If a point P(t) appeared in the red triangle, it
would be considered as a non-disruptive behavior, which could lead to
catastrophic effects in case of ITER. The CM predictor provides a greater degree
of assurance in these regards with its separation frontier and hence, adds another

point to the already favorable list of positive features.

The value of the soft margin, also known as the width of the relaxation
band was chosen to be 1.1667x10"" T /A on either side of the diagonal line X=Y
as shown in figure 5.7. During the analysis of false alarms, it was observed that
~33% of false alarms were generated due to small disruptions, which plasma
managed do recover from. In essence, those are actual alarms, only because
plasma recovered and did not disrupt, they get the label of false alarms but it is
important to note that the plasma went to the disruptive state, causing an alarm
to be raised. Remaining 67% of false alarms followed a pattern where all the
plasma state points in the disruptive zone are not only concentrated around the
diagonal X=Y in the parameter space but also, their distribution around the

diagonal can be represented mathematically as follows:
lx(t —7) —x(®)| < dp (5)

where x(t- T) and x(t) are consecutive plasma state points and dg is the Euclidean
distance of the farthest point from the diagonal line X=Y in the disruptive zone.

Figure 5.8 shows a graphical representation of the relaxation band.

Optimal width of the relaxation band was chosen following a meticulous
procedure where reduction in false alarms without the cost of reducing success
rate was the main objective. Several values of dg were tested as per following
criterion.

dB,k =k-op (6)
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here, op is the standard deviation of the distances of the individual disruptive
training centroids to x(t) = x(t - t), k= 0,0.01,0.02,..., 0.1. The comparison of
effect of different values of k on success rate, positive warning time and false

alarm rate is demonstrated in table 5.3.

6

5}

x(t-7) (a.u.)

Figure 5.8: A graphical representation of the relaxation band on either side of the X=Y

diagonal line.

k d SR WT>0 FA

(mT/MA) (%) (%) (%)
0 0 99.29 97.51 1.35
0.01 0.0021 99.29 97.51 1.32
0.02 0.0041 99.29 97.51 1.32
0.03 0.0062 99.29 97.51 1.32
0.04 0.0083 99.29 97.51 1.29
0.05 0.0103 99.29 97.51 1.29
0.06 0.0124 99.29 97.51 1.16
0.07 0.0145 99.29 97.51 1.16
0.08 0.0165 99.29 97.51 1.12
0.09 0.0186 08.58 97.15 1.12
0.1 0.0207 08.58 97.15 1.02

Table 5.3: Values of k reducing false alarm rate without affecting success rate as well as
positive warning time detections. The row highlighted in red is the best result and was chosen
to define the relaxation band for the CM predictor to be installed in the JET RTN.
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It is very important to highlight the empirical fact that scatterplots of
plasma state points in the parameter space can contain some points very far from
the diagonal. If the values of k are chosen to be very high, a penalty in terms of
drop in success rates was being paid. Table 5.4 shows how the larger values of k
affected the success rate. A graphical representation comparing two JET

discharges is also shown in figure 5.9.

k d SR WT>0 FA

(mT) (%) (%) (%)
0 0 97.51 96.80 1.62
0.1 0.0487 95.73 95.37 0.83
0.2 0.0974 94.66 04.31 0.56
0.3 0.1462 93.59 92.17 0.50
0.4 0.1949 02.88 90.39 0.36
0.5 0.2436 90.75 86.83 0.23
0.6 0.2923 86.48 81.85 0.20
0.7 0.3410 80.07 73.31 0.13
0.8 0.3897 72.24 65.48 0.10
0.9 0.4384 65.48 59.43 0.10
1 0.4872 60.14 54.09 0.07

Table 5.4: Effect of large k values on the success rate. Higher k values reduce false alarms but

also reduce significantly the success rate as well as positive warning time detection rate.

Application of the CM predictor on JET discharges is illustrated in the
following part of the chapter. Starting from an example of non-disruptive
discharge- JPN 94152 in figure 5.10, a correct identification of a disruptive
discharge- JPN 94156 is shown in figure 5.11. Then, an analysis of a missed
alarm, JPN 94448 is given followed by a false alarm in JPN 94162 is also
provided. All these examples are taken from the data obtained from PETRA,
which houses the CM predictor and collects data for each discharge in real time.
Note should be taken of the fact that during these discharges, the CM predictor

was not being used for machine protection scenarios.
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Figure 5.9: Example of JET discharges where several different bandwidths were chosen to filter
out false alarms to obtain results shown in table 5.4. The green points are non-disruptive
points, red points are disruptive points, red line is the separation hyperplane, diamond near
green points is the non-disruptive centroid whereas the diamond near red points is the

disruptive centroid. Blue lines are different bands and dashed line is the diagonal X=Y.

Figures 5.10-5.13 will have the same legends as follows. Green diamond represents
non-disruptive centroid and red diamond represents disruptive centroid. Blue
circles are non-disruptive plasma state points and red circles are disruptive

plasma state points. Magenta line is X=Y diagonal and dashed blue lines around

the diagonal define the relaxation band.
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Figure 5.10: A non-disruptive discharge correctly identified by the CM predictor.
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We can see that the discharge completes a proper cycle of plasma current
ramp up, flat top and ramp down in 5.10 (a). The ML and ML/Ip are plotted in
5.10 (b) and 5.10 (c) respectively where they show no unusual activity. The
evolution of plasma state is shown in 5.10 (d) where a clear clustering of points
far away from disruptive centroid as well as separation hyperplane is visible. This
is a correct prediction because there were no alarms raised by the CM predictor
due to the fact that the plasma never switched its behavior from non-disruptive
to disruptive. The next example is of a disruptive discharge, JPN 94156 where
the CM predictor correctly identifies the change in plasma state from disruptive

to non-disruptive and raises an alarm accordingly as shown in figure 5.11.
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Figure 5.11: A disruptive discharge correctly identified by the CM predictor.

JPN 94156 is a disruptive discharge because as seen in figure 5.11 (a),
the plasma current goes into a quench abruptly at ~ 53 s after ramp up and flat
top phase. The upcoming disruption is also reflected in the sudden change of
amplitude of ML signal in figure 5.11 (b) and consequently in figure 5.11 (c).
Looking at figure 5.11 (d), we can see how the plasma goes from a non-disruptive
state to a disruptive state by means of appearance of plasma state points from
the cluster close to the non-disruptive centroid towards the separation hyperplane

and into the disruptive zone. It is also worth noting that there are several points
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in the disruptive zone which lie inside the relaxation band defined previously.
Those points are correctly labelled as non-disruptive and shown with blue
markers as compared to the disruptive points shown with red markers. Next is
an example of a disruptive discharge not recognized by the CM predictor- which
is terms of qualifying parameters, is a missed alarm.
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Figure 5.12: A disruptive discharge not identified by the CM predictor.

JPN 94448, a disruptive discharge was not correctly identified by the
CM predictor as shown in figure 5.12. The discharge managed to go through the
plasma current ramp up phase but just while entering the flat top region,
disrupted violently as can be seen in figure 5.12 (a). As usual, figures 5.12 (b)
and 5.12 (¢) show corresponding activity in ML signals. Figure 5.12 (d) shows no
points in the disruptive zone of the parameter space and hence, assigns JPN
94448 a non-disruptive label. Sometimes, the rate of current quench or the
amplitude of saturated locked mode does not grow enough to surpass the
separation hyperplane condition. In such a scenario, the CM predictor fails to
identify a disruption correctly. This is a rare occurrence as will be shown in the
following chapter where a detailed analysis of different JET campaigns is
presented. Even though the plasma state points cluster is stretched far away from

the non-disruptive centroid, some points almost reach the separation hyperplane
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but cannot cross it. It is worth mentioning a factor that can sometimes cause
some alarms to be missed and that is the enabling condition of the CM predictor.
Depending on the experimental scenario, the JET RTPS and several other
systems are enabled during a specific part of the discharge only. For example, if
the condition for enabling CM predictor is a minimum value of Ip then, if the
discharge disrupts immediately, the CM predictor does not see the disruptive
behavior since it is not enabled, In the next example, a false detection is

demonstrated where a non-disruptive discharge is incorrectly classified otherwise.
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Figure 5.13: A non-disruptive discharge incorrectly identified by the CM predictor.

Here we demonstrate a false detection of JPN 94162- a non-disruptive
discharge as a disruptive discharge. As shown in figure 5.13 (a), the discharge
goes through the ramp up-flat top-ramp down phase in the expected manner.
Even though there is a sudden activity on the ML signal, quite visible in figure
5.13 (b) and 5.13 (c), the discharge terminates safely. However, the CM predictor
being sensitive to such abrupt changes in signal amplitudes, recognizes it as a
disruptive behavior visible in figure 5.13 (d). The clustering of plasma state points
is once again stretched away from the non-disruptive centroid and contrary to
the missed alarm case, where no points could cross the separation hyperplane,

four points did manage to appear in the disruptive zone outside the relaxation
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band and hence, are identified as disruptive state points, causing the CM
predictor to raise an alarm. Here again, the enabling condition for the predictor
affects the overall rate of false alarms. If a discharge is to be executed at high Ip
values (~1.5 MA and above), the Ip ramp up and ramp down phase can cause
ML signal to pick up activity even though the plasma is in a non-disruptive state.
The extreme sensitivity of CM predictor towards abrupt changes in ML
amplitude demands that the predictor enabling criterion be set very carefully for
each experimental scenario in order to obtain the maximum benefit of reliable
prediction capability of the CM predictor.

In the next chapter, a detailed analysis of the performance of the CM
predictor in the JET real time network is provided where a thorough comparison
is made with other predictors constituting the JET RTPS.
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Chapter 6 — Application and Results

In this chapter, a detailed report of the results obtained using the centroid
method predictor is given. Application to the JT-60U data as well as various
experimental campaigns in JET is presented. The JT-60U results show how the
generic predictor described in chapter 5 could be adapted to a signal similar to
the Locked Mode amplitude and with JET results, an in-depth analysis is
presented including the first ever comparison between JET real-time protection

system and the centroid method predictor.

6.1. JT-60U

JT60-U was the Japanese flagship tokamak before a new upgrade (JT-
60SA) was proposed and approved for some ITER related studies. The centroid
method predictor was tested on experimental discharges with high beta values
[92]. The framework of the predictor remained unchanged and instead of the ML
signal, a magnetic diagnostic signal called Magnetic Perturbation Time
Derivative (MPTD) was used, which is sampled at 1 ms. The signal provides the
amplitude of n=0 component of the saddle loop signal where n being the toroidal
mode number. The reason behind usage of MPTD signal is that it is considered
to provide a good gauging of an abrupt change of the plasma state- just like a

disruption.

As shown in fig. 6.1 (¢), the grouping of points representing plasma state
is very concentrated in one single region. Here the x and y coordinates are
obtained using the amplitude values of MPTD at time t and t-t, which essentially
means that a plasma state point P(x,y) has the current sample of MPTD as
ordinate and the previous sample of MPTD as abscissa. Even though in fig. 6.1
(b) we could see some oscillations in the MPTD amplitude, the values are closely
scattered evenly around 0 and hence, the plasma state points in fig. 6.1 (¢) appear

closely clustered around (0,0) point in our two dimensional parameter space.
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Figure 6.1: (a) Plasma current, (b) magnetic perturbation time derivative and (c) two

dimensional parameter space for a non-disruptive discharge at JT60-U.
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Figure 6.2: (a) Plasma current, (b) magnetic perturbation time derivative and (c) two

dimensional parameter space for a disruptive discharge at JT60-U.
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The difference between figures 6.1 (¢) and 6.2 (c) is the scattering of the
points representing plasma state. In case of a disruptive discharge (fig 6.2), the
clustering of plasma state points is not very dense in a particular region, instead,
there is a spread, indicating a change of behavior. Using this observation,
information regarding disruptive and non-disruptive behavior of the plasma was
compressed in two centroids, one each for disruptive and non-disruptive case.
The non-disruptive centroid was very close to the point (0,0) whereas the
disruptive centroid, was sufficiently far enough from its non-disruptive
counterpart. As explained in chapter 5, the assignment of disruptivity label was
done based on the Euclidean distance of the plasma state point P from either

centroids. A linear separation hyperplane was obtained.
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Figure 6.3: Plasma state point at each instance of the discharge is represented by

Ep

point P. Epcn and Epcp are the Euclidean distances between P and centroids

The centroids were obtained using a dataset of training discharges
keeping in mind the only condition to use data where the plasma current is above
0.1 MA during the discharge. In case of non-disruptive centroid determination,
all the samples were split into pairs and hence, an even number of samples were
required for each discharge. Only exception was made when for the last pair if
there wasn’t any sample of MPTD above 0.1 MA available, a solitary sample was
used in chronological order to obtain the y coordinate of the plasma state point.
The mean value of x and y coordinate of the collection of plasma state point
provided the centroid for that particular non-disruptive discharge. The process
was repeated for the whole training set of N non-disruptive discharges. Once
obtained, all the N individual non-disruptive centroids were put together and

another iteration of mean value calculation was carried out to procure the global
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non-disruptive centroid, which as expected, turned out to be very close to the

point (0,0) in the parameter space.

In case of the disruptive discharges, a time window of 20 ms around the
disruption time was used to determine the coordinates of individual centroids.
The sampling rate being 1 ms, the sample with the lowest amplitude of MPTD
signal among the 20 selected samples, was chosen as the y coordinate and the
sample previous to that sample was chosen as the x coordinate of the centroid.
Again, the process was repeated for all N training discharges and the mean values
of the x and y coordinates of those N individual centroids were used as global

disruptive centroid.

JT-60U shot: 48494

<
=05
=

0

7.655 7.66 7.665 7.67

w
= 0.5
g’ 0t “J (dj,)ﬁ"djay)
= -0.57] ’
o 4|
=

7.655 7.66 7.665 7.67
time (s)

Figure 6.4: Illustration of how a disruptive centroid is selected. The green line represents the

disruption time

The dataset of discharges tested with this predictor contained a total of
154 discharges, 76 of which were disruptive and 78 were non-disruptive. Two
different approaches were used to assess the performance of the linear predictor
where in the first approach, approximately 40% of disruptive and non-disruptive
discharges were randomly chosen and used to train the predictor and using the
centroids obtained, the remaining discharges were put to the classification test.

In the other method, adaptive training from scratch was used as described in
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chapter 4. For both the approaches, a necessary condition for alarm triggering
was established in the sense of two consecutive plasma state points P and Pi:

must appear in the disruptive region of the parameter space.
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Figure 6.5: The red and blue crosses are respective global centroids for disruptive and non-

disruptive discharges, the circles are individual centroids of training discharges

Using the centroids shown in figure 6.5, the equation defining disruptive

behavior was obtained to be:

Several different training discharges were randomly chosen and tested
with corresponding test discharges, resulting in highly encouraging detection
rates with mean global success rate reaching 98.3%, the success rate with positive
warning times as high as 95.4%, mean missed alarm rate being 1.7% and false
alarm rate of 5.3% was achieved while obtaining an average warning time of 17
ms, meaning every detected disruption was recognized 17 ms prior to its
occurrence on average. The warning time is an important parameter while
assessing the performance of a predictor because it provides a measure of how
the predictor can be utilized in terms of disruption handling. A very high average
warning time would mean that the predictor is good enough to provide the
operators sufficient time to change the discharge trajectory whereas a short
warning time would only allow for actions to be taken that would minimize the

harm done by a disruption.
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Figure 6.6: Illustrations of the parameter space for a non-disruptive (left), disruptive (center)

and false alarm (right) case. The centroids are denoted by black squares.

In case of the alternative approach, the discharges were processed in a
chronological order so that the predictor learns “on the go” about the disruptivity
of the plasma- simulating a real time application scenario. The first predictor
from scratch was obtained after the first disruption and for every missed alarm,
re-training of the predictor was carried out to incorporate crucial information
that the predictor would not have, causing it to miss a detection. The resultant
predictor trained using such an approach used 1 disruptive and 2 non-disruptive
discharges, provided a global success rate of 97.3% with positive success rate as
high as 94.7% and a low missed alarm rate of 2.3%, missing only 2 alarms-
requiring only 2 re-trainings [92]. The false alarm rate was considerably high,
reaching 19.7% but this has to do with the high sensibility of the predictor
towards disruptive behavior which in many cases, is present in a discharge but
does not necessarily lead to a disruption and the discharge recovers and
terminates without disrupting. This sensibility was also reflected in a
comparatively higher average warning time of 59 ms, almost thrice that of a
conventionally trained predictor. The linear equation for the predictor from

scratch can be given by:

x, < —0.5580 - x; — 0.3664
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6.2. JET C38

The predictor was envisaged keeping in mind the ML signal and mode
locking as a certain precursor to disruption and hence, it was only logical to test
the predictor after its real-time implementation in JET. Previously, two different
real time systems, namely APODIS and SPAD were developed and deployed in
the JET RTN by CIEMAT and coworkers. However, this was the first time that
comparison of a non-JET real time system was being made with all the
constituents of the JET RTPS. The experimental campaign in focus was
campaign C38- the penultimate campaign before the much anticipated DT
campaign. As discussed in chapter 1, PETRA allows the scientists not only to
choose from different experimental scenarios, it also allows them to modify
conditions required to maintain a smooth operation of JET- the essential feature
for machine safety. Different experimental scenarios in PETRA have preset safety
measures programmed to be used by RTPS in order to prevent any undesirable,
machine damaging experimental mishaps.

The PETRA feature providing constant machine safety is called the
protection scenario. It contains several physics based predictors which are some
of the most obvious indicators of plasma transitioning to a perilous state and
entering the disruptive behavior. However, these predictors rely either on a
threshold value, which upon surpassing for a certain duration of time in a
continuous manner, would result in automated intervention of the RTPS or on
fulfillment of a predefined condition for a chosen length of time during the course
of the discharge. The protection scenario has two disruption mitigation alarms
named PetraMitl and PetraMit2 connected to different protection alarms as
shown in table 6.1. The alarm trigger conditions are also given for reader’s
understanding. These trigger conditions can be modified depending upon the
nature of the experiment at hand and are usually modified to make sure effective
safety measures are in place for the case of an unexpected and unforeseen
disruption.

Highlighted predictors in table 6.1 are the ones compared with the CM
predictor. All the predictors mentioned in table 6.1 are always active for any
operational discharge and have automated system interventions programmed.
Any planned discharge with plasma current > 2 MA has disruption mitigation
valve (DMV) enabled with RTPS and if any of the above mentioned system
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raises an alarm, the DMV is triggered to inject massive amounts of gas to cool

the plasma down to reduce the energy dump into the VV via disruption.

Mitigation
alarm Predictor Name Trigger Condition
name
LOCA ML > 2 mT
ML/I 400 pT/A for 20
NRMLOCA /Ir > 400 pT/A for 20 ms
continuously
CMBLY Restraint ring loop voltage product >
500 V2
Petramitl ,
NRMCMBLV CMBLV/ Ip? > 50 V2/A?
Plasma current numerical
SHRTDIDT L
derivative over 2 ms > 50 MA /s
LONGDIDT .Plas.ma current numerical
derivative over 16 ms > 7 MA /s
From 40.05 s onwards, plasma vertical
centroid numerical derivative (over 16
Petramit2 VDE ms) > 10 m/s if an Ip derivative or

restraint ring loop voltage type
disruption has not been detected in
the last 50 ms
Table 6.1: PETRA Protection scenario predictors

The C38 in JET took place between June 2019 and June 2020.
Thousands of experimental discharges were made during this period for different
experiments. After careful filtering, a database of 1544 discharges was obtained
out of which 1091 were non disruptive discharges and 460 discharges were
disruptive. Note should be made of the fact that no training was required in this
case since the CM predictor was already implemented in the JET real-time
network and was collecting data, the only difference was that it was not
connected to any mitigation alarms. Also worth mentioning is the fact that in
this dataset, only unintentional disruptions were considered since there are
experiments to study the effects of disruptions and for that, disruptions are
provoked intentionally.

The 453 disruptive discharges used for the performance analysis of CM

predictor during C38 included experimental shots from different scenarios.
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Special focus was put on the Baseline and Hybrid scenario experiments. These
scenarios are two of the most important for JET as they are preparatory sessions
of ITER operation. Both the scenarios are envisaged for testing different
operational capabilities to arrive at a stationary scenario which could be suitable
for sustained high DT fusion power. Baseline scenario aims for operations at high
plasma current and magnetic field limits while keeping the current profile relaxed.
Hybrid scenario focuses on operation at high beta values and shaped current
profiles. As shown by Garzotti [93], the baseline scenario showed improved
particle confinement whereas the hybrid scenario demonstrated a better efficiency
of stored energy conversion into fusion power. Details of operational parameters

set for the JET DTE campaign of both baseline and hybrid scenarios are given

in table 6.2.
Parameter Baseline Hybrid
Scenario Scenario

Plasma current Ip (A) 3.8-4.5 2.2-2.5/2.5-2.9
Toroidal magnetic field By (T) 3.45-3.7 2.8/34
Auxiliary heating power Paux (MW) 42 42
Fusion power P (MW) 15 15
Fusion energy Wi, (MJ) 75 75

Table 6.2: Baseline and hybrid scenario parameters [93]

6.2.1.CM predictor detection rates

In this section, a detailed discussion of the performance of CM predictor
is presented. Parameters used for assessing the performance are the detection
rates and warning time. An ideal predictor obtains very high success rates while
minimizing the false alarms without compromising on the warning times. In JET,
since the RTPS system is capable of intervention and the minimum time required
for allowing the system intervention being 10 ms, alarms detected with warning
times less than 10 ms are categorized as tardy alarms. Detection rates of the

complete dataset are given in table 6.3.

Parameter Value
Successful alarm rate 98.9 %
Missed alarm rate 1.1 %
False alarm rate 15.21 %
Average Tyaming 172 ms

Table 6.3: CM predictor performance for the complete database of C38
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The successful alarm rate in table 6.3 includes tardy alarms as well. The
successful alarm rate with warning time greater than 10 ms is 77.9% and the
successful alarm rate with warning time less than 10 ms is 20.9%. The average
positive Tyaming is 225 ms whereas the average negative Tyaming is -25 ms. Here,
the negative warning time means that the disruption was detected after it had
already occurred. As can be seen in figure 6.7, the number of detections with
Tyaming > 2 s is very low and hence, the CM predictor emphasizes the potential

usability as a mitigation predictor.
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Figure 6.7: Warning times of the complete database of C38 for the CM predictor. The bars in
red show detections post disruption.
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Figure 6.8: Cumulative frequency of detections as a function of T\aming for all the detections.
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Even though figure 6.7 provides a general outlook on Tyaming, a better
insight on the can be had through figure 4.8, where the cumulative fraction of
successful detections is plotted as a function of Tyamine. The semilog x-axis would
suppress the contribution corresponding to Tywaming < 0 s and hence, only the

warning times > 10 ms are reflected in figure 6.8.

6.2.2.NRMLOCA predictor detection rates

The NRMLOCA predictor has been an integral part of the PetraMitl
and PETRA protection scenario. As discussed in chapter 3, it uses the exact
same signals as the CM predictor, ML amplitude normalized to the plasma
current. There is, however, a key difference in the operational functionality of
both of them. If CM predictor has a unique pre-defined separation hyperplane
with slope and intercept values for all type of experiments, the NRMLOCA works
on a rather simple yet disadvantageous principle of using a threshold value. The
threshold value not only needs to be crossed but also, the plasma needs to remain
in the disruptive zone for at least 20 ms, otherwise, the alarm is not raised. Figure

6.9 shows the parameter space with the most commonly used threshold value for

NRMLOCA.
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Figure 6.9: Combined parameter space for CM predictor and NRMLOCA.

91



Detection rates and warning times for NRMLOCA are given in table 6.4.
It is most notable that the price paid for a 100% detection rate is a very high
false alarm rate, also reaching ~100%. For any predictor, the most important
evaluation parameter is the combination of high successful alarm rate and a very
low false alarm rate- a criterion NRMLOCA clearly fails to fulfill. Furthermore
only 65.12% of successful detections were made for Tyamine > 10 ms with the
remaining 34.88% detections being tardy detections. Also, the average Twaming
values is skewed to be higher than 100 ms due to the presence of an outlier (see
fig. 6.10), a premature detection with a warning time of ~25 s. Removal of that
outlier, brings down the average warning time to 72 ms, which is exactly 100 ms

smaller compared to the CM predictor.

Parameter Value
Successful alarm rate 100 %
Missed alarm rate 0 %
False alarm rate 99.91 %
Average T\aming 127 ms

Table 6.4: NRMLOCA predictor performance for the complete database of C38
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Figure 6.10: Warning times of the complete database of C38 for the NRMLOCA predictor. The

bars in red show detections post disruption.
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6.2.3.NRMCMBLYV predictor detection rates
NRMCMBLV uses the product of restraint ring loop voltage normalized

to plasma current for detection of possible disruptive behavior of the plasma. It
also uses a static threshold value to classify plasma states and the default value
for raising an alarm is NRMCMBLV > 50 pV?/A2 The performance on the
complete dataset is summarized in table 6.5. Once again, it is clearly visible that
the predictor obtains a 100% successful detection rate but also, the false alarm
rate is ~ 100%, rendering the predictor not usable for reliable plasma safety
application owing to the fact that if for every discharge, an alarm is raised, the
operators will never be able to push the plasma to the high performance mode
and actually do experiments to study and understand the plasma in desired

conditions, something very essential to the purpose of ITER.

Parameter Value
Successful alarm rate 100 %
Missed alarm rate 0%
False alarm rate 99.91 %
Average T\aming 870 ms

Table 6.5: NRMCMBLYV predictor performance for the completeC38 database

Worth highlighting is the fact that out of 100% successful detections,
70.2% are tardy detections, meaning that even if the disruptions were detected,
there was not sufficient time to allow the RTPS to react and alleviate the effects
of the eventual disruption. Also, the staggeringly high average Taming 1S caused
by several premature detections as shown in figure 6.11 (a). As many as 30
detections were made with warning times greater than 6 s, out of which, 25 have
warning times in excess of 10 s. If all these 30 outliers are removed, the average
warning time falls down to 47 ms, worse than NRMCMBLV and ~120 ms lower
than the average Tyammg for the CM predictor. Figure 6.11 (b) shows the

distribution of Tyaming for 30 outliers mentioned above.
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Figure 6.11: Warning times of the complete database of C38 for the NRMCMBLYV predictor.

6.2.4.Ir time derivative predictor detection rates
Both the SHRTDIDT and LONGDIDT predictors are based on

detection of variation of plasma current over 2 ms and 16 ms respectively. The
main reason behind using such a detector for protection scenarios is that nearing
a disruption, the loss of plasma equilibrium results in changes in magnetic field
configuration which is reflected via variations in plasma current and vice versa
is also possible. Both SHRTDIDT and LONGDIDT also rely on threshold values
for disruptivity detection. Usually, in case of SHRTDIDT, the value has to be
greater than 50 MA /s for 10 ms whereas for LONGDIDT, the value for triggering
an alarm is 7 MA/s for 10 ms. Here again, the primary concern is not only the
strong reliance on hard threshold to be fulfilled but also, the fulfillment of these
thresholds for a given duration of time, which in case of JET, is the minimum
time window required for actuators to respond for mitigation. The parameters

are given in tables 6.6 and 6.7 with histograms for warning times in figures 6.12.

Parameter Value
Successful alarm rate 94.7 %
Missed alarm rate 5.3 %
False alarm rate 10%

Average Tyaming 12 ms

Table 6.6: SHRTDIDT predictor performance for the complete C38 database
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As shown in table 6.6, the SHRTDID has a lower false alarm rate
compared to the CM predictor, NRMLOCA and NRMCMBLV. However, the
high successful detection rate needs to be further analyzed as in the case of
previously discussed predictors. Out of 94.7% successful detections, only 18.54%
detections were made with a warning time in excess of 10 ms, rest 76.16% of
successful detections were made with less than 10 ms warning time. In fact, there
is only one discharge where an upcoming disruption was detected 6 s in advance,
which affects the average warning time of the complete database immensely.
Upon considering the particular discharge with 6 s of Twaminz an outlier, the
average warning time for SHRTDIDT reduces down to -1 ms, which means that
SHRTDIDT detected disruptions just after their occurrences- failing in the very
duty it is desigdned to be used for. Figure 6.12 shows tendencies of warning times
for SHRTDIDT where 6.12 (a) demonstrates the overall distribution of the
warning times and 6.12 (b) gives a better insight into the warning times inferior

to 10 ms.
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Figure 6.12: Warning times of the complete database C38 for SHRTDIDT.

T

For LONGDIDT, even though the false alarm rate is better compared
to NRMLOCA and NRMCMBLYV, the detector still has a scope for improvement
mainly because out of the 98% successful detections, 84% are tardy detections,
with warning times less than 10 ms. So, the effective successful detection rate
falls down to a mere 14%, which is lower than the false alarm rate. The average
warning time is also affected by a solitary detection with warning time of 6s just
like in the case of SHRTDIDT as shown in figure 6.13 (a). Removal of the outlier

brings the average Tyamine down to -13 ms, meaning that most of the disruptions
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were detected after their occurrence. Figure 6.13 (b) represents the overall

distribution of warning times inferior to 10 ms.

Parameter Value
Successful alarm rate 98 %
Missed alarm rate 2 %

False alarm rate 23.37%
Average Tyaming 550 ps

Table 6.7: LONGDIDT predictor performance for the complete database C38
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Figure 6.13: Warning times of the complete database C38 for the LONGDIDT.

Comparing both the Ip time derivative predictors, the similarities in
results is rather obvious. The working principle for both the predictor is identical
and the only difference is the necessary duration of fulfillment of the threshold
condition and the values of the threshold. These detectors have a much better
performance compared to NRMLOCA and NRMCMBLYV in terms of false alarms
but negative warning times (after the removal of solitary outlier for both
SHRTDIDT and LONGDIDT) leave much to be desired from these predictors
for their use in machine safety department for ITER and subsequent ITER class

tokamaks. Detecting disruptions while they are occurring is not ideal.
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6.2.5.Baseline and hybrid scenario comparison

A direct comparison of performances of all the detectors summarized is
sections 6.2.1-6.2.4 is presented in this section with special focus on the baseline
and hybrid scenario experiments made during C38 campaign in JET. A total of
424 discharges are included, out of which 78 are disruptive and rest 346 non-
disruptive. The 78 disruptive discharges are further divided according to the
experimental scenario, 53 of them belonging to the baseline scenario and the
remaining 25 to the hybrid scenario.

As reflected in table 6.8 the CM predictor has better results in terms of
high success rate with positive warning times. Care must be taken in interpreting
the false detection rates, owing to the fact that whenever an event is detected by
any of the PetraMitl constituent, RTPS of JET takes immediate action to
terminate the discharge. In table 6.9, we compare the average warning times and
their standard deviation. Here again, the CM predictor outperforms NRMLOCA,
SHRTDIDT and LONGDIDT predictors. Actually, the NRMCMBLV is also

worse than the CM predictor but a couple of premature detections inflate the

average Tyaming value as can be observed considering the standard deviation of

the same.
Detector Success Success Success Missed
Rate Rate with Rate with Rate
(%) positive negative (%)
Twarning (70)  Twarning (%)
CM 96.16 84.62 11.54 3.84
NRMLOCA 100 69.23 30.77 0
NRMCMBLV 100 61.54 38.46 0
SHRTDIDT 97.5 52.5 45.00 2.5
LONGDIDT 100 43.59 56.41 0

Table 6.8: Comparison of detection rates for different detectors comprising PetraMit1

The analysis, comparing the alarm times of several detectors with the
ones of CM predictor, has produced some interesting results. Here, a clarification
is appropriate- the term alarm time is defined as the first instance a predictor
detects an upcoming disruption for each discharge. Mathematically, AT = Tsenar

- Tem, where Tgevar is the alarm time for a particular detector and Tey is the
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alarm time for the CM predictor. Tables 6.10 and 6.11 present comparisons of
AT values as well as the percentage of alarms detected by the CM predictor
earlier than those of the detectors in PetraMit1 for both BS and HS experiments.

Detector AVE T\ ning O Tarming
(ms) (ms)
CM 117 204
NRMLOCA 38 210
NRMCMBLV 546 1635
SHRTDIDT -5 55
LONGDIDT -16 77

Table 6.9: Comparison of warning times for different detectors comprising PetraMit1

Detector Avg (Avg T, nime)om — Disruptions

Tovarning (AVE T\ ming) DETECTOR detected in

(ms) (ms) advance (%)
CM 108 0 100
NRMLOCA 80 28 83.87
NRMCMBLV -3 111 87.1
SHRTDIDT -7 115 90.3
LONGDIDT -7 115 93.55

Table 6.10: Here in fourth column, we present the percentage of disruptions detected by CM

predictor before any other system of PetraMit1 for baseline scenario experiments.

Detector  Avg T, .. (AVE T ine)on — Disruptions
(ms) (Avg detected in
advance (%)

Twarning)DETECTOR

(ms)

CM 126 0 100
NRMLOCA -4 130 80
NRMCMBLV 1095 -969 70
SHRTDIDT -3 129 80
LONGDIDT -25 151 80

Table 6.11: Percentage of disruptions detected by CM predictor before any other system of

PetraMit1 for hybrid scenario experiments.
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NRM SHRT LONG

CM NRMCMBLV
AVERAGE LOCA DIDT DIDT
Positive
33 18 4 0 0
Twarning (mS)
Negative
-31 -55 -17 -17 -18

Twarning (mS)

Table 6.12: Comparison of average T\yaming for baseline scenario experiments.

In tables 6.12 and 6.13 we present a comparison between positive and

negative warning times for both baseline and hybrid scenario. Apart from being

the predictor with least number of negative Taming detections, the CM predictor

has the smallest average value for the same — a demonstration of efficiency of

detections.
NRM SHRT LONG
AVERAGE CM NRMCMBLV
LOCA DIDT DIDT
Positive
21 16 4818 0 18
Twarning (mS)
Negative
-65 -182 -98 -89 -98
Twarning (mS)

Table 6.13: Comparison of average Tyaming for hybrid scenario experiments.

Again, it is important to stress on the fact that, for a vast majority of

discharges, the CM predictor does detect the incoming disruptions well in

advance of the minimum time interval required to undertake mitigation actions.

In the next section we discuss the performance with regards to the vessel force.

6.2.6.Vessel Forces

Disruptions result in large amounts of dynamic vessel forces in big

devices. In tokamaks such as JET, where the plasma cross-section is elongated,

a routinely observed phenomenon is the vertical displacement of plasma centroid.

This displacement results due to the loss of plasma position control, often caused

by several different instabilities. Hence, the volume of the plasma moves upwards

or downwards with reference to the VV, eventually making contact with material
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surfaces. Such movement leads to a reduction of plasma volume, without a
significant change in the plasma current. When the plasma makes contact with
VV walls, currents start flowing through the vessel walls, famously known as the
‘halo currents’ (Ix). Apart from the halo currents, the other type of currents
arising in the VV structures, due to the movement of the plasma, are the eddy
currents, which contrary to the halo currents, complete their full path in the
structures. A current density can be associated with these in-vessel currents
(Jin-vesset) and the interaction of these currents with the magnetic field produces
jin-vesset X B forces on vessel components. As per [94], the overall force caused on

VV components by a disruption can be estimated using,
Fd - (12T[a“'IpBO

with 2ma, being the poloidal circumference of the plasma chamber wall, I, is the
net plasma current, By is the magnetic field and f; is a dimensionless coefficient.
However, in JET and other tokamaks, Fq/I,? is used to evaluate the experimental
observations, since only a fraction of plasma current ends up flowing through the
VV structures. The forces produced by these currents can be of swing or roll
type, causing significant structural and mechanical stresses to the VV [95]. In
JET, the operational protocols demand a simulation of the planned discharge
with operational parameters, to obtain a prediction of the vessel force (Fp)

produced in the event of a disruption.

It was interesting to obtain and compare the amplitude of the vessel
forces at Tgevar for the various predictors. As can be seen in figure 6.14, the
mean and standard deviation values of Fp for the CM predictor are notably higher
compared to the other predictors. Especially, the values compared with detection
times for NRMLOCA (see fig. 6.15) are of importance due to the recurring
mention of both the predictors using the same disruption precursor for
forecasting- the mode locking phenomenon. Of course detections made at higher
values of vessel forces justify to react promptly and take appropriate mitigation
action to minimize the disruption consequences. As per Lehnen [96] and de Vries
[35], the forces thus produced by the halo currents are not only dependent on the
ratio of Iu/Ip but also, on the duration for which the halo current is flowing
through the VV.
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Figure 6.14: A direct comparison of values of Fp at Tgetection and Taisruption for CM predictor.
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Figure 6.15: A direct comparison of values of Fp at Tyetection and Taisruption for NRMLOCA

The JET vessel characteristic time ~714 ms [33] being longer than the
duration of majority disruptions, the reaction of VV to this force can be compared
to a spring system, which would create a damping effect on oscillations caused
by the dynamic forces on VV. For a mass-damper-string system, the displacement

is directly proportional to the force provided the force is applied continuously or
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for much longer than the natural frequency of the spring- the JET vessel for our
toy model. Using the simple analogy of the concept of instantaneous impulse,
where F.dt is dependent mainly on the force, even for a shorter duration- one
cannot deny the possibility of experiencing much larger displacements just
because of resonance between two systems. So, ideally, one should aim at
avoiding disruptions at higher force values. The advantage of CM predictor
making detections at higher values of Fp is the fact that it allows us to regulate
the value of Ip- the most influential quantity on the resultant vessel forces. In
addition, the detections are made before the rest of the PetraMitl predictors as

depicted in figure 6.16.

All the disruptions detected by the CM predictor went on to exhibit
VDE. In JET, the disruptions have been identified to be accompanied by toroidal
variation of the plasma current [97]. Combination of this toroidal variation and
occurrence of VDEs amounts for a majority of electromagnetic loads produced
on VV during and after a disruption. Moreover, different classes of VDEs and
asymmetries in plasma current variation further result in different types of
movement of the VV [98-100]. The CM predictor, detecting disruptions in
advance as summarized in previous sections, can provide crucial time to react
and if possible, prevent the occurrence of such VDEs. On average, for all the 75
detected disruptions of our database, the CM predictor raised alarms of an

upcoming disruption 265 ms before there was a VDE detected.
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Figure 6.16. A comparison of mean and standard deviation values of Fp at Tactection and Teisruption

between different predictors.
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6.3. JET C39

The C39 in JET was a rather short tritium preparation campaign which
took place between October-December 2020. Approximately 300 experimental
discharges were made during this period mainly for the upcoming DT campaign
in 2021. After careful filtering, a database of 279 discharges was obtained out of
which 250 were non disruptive discharges and 29 discharges were disruptive. Once
again, it is important to highlight that no training was required in this case since
the CM predictor was already implemented in the JET real-time network and

was collecting data

The 29 disruptive discharges used for the performance analysis of CM
predictor during C39 included experimental shots from different scenarios except
the baseline and hybrid scenario experiments. Since C39 was carried out to
prepare JET for upcoming DT campaigns, main experiments carried out in C39
involved usage of Tritium. Also a dedicated set of experiments towards runaway
electrons was executed, which produced a several disruptive discharges but since
these disruptions are expected and in some cases, even intentionally provoked,
the disruptive discharges from runaway electrons experiment were consciously

ignored from the database for the performance analysis of the CM predictor.

6.3.1.CM predictor detection rates

Similar to section 6.2.1, parameters used for assessing the performance
are the detection rates and warning time. Detection rates of the dataset are given
in table 6.14.

Parameter Value
Successful alarm rate 100 %
Missed alarm rate 0%
False alarm rate 2 %

Average Tyaming 172 ms

Table 6.14: CM predictor performance for the complete database of C39

Tardy alarms are also included in the computation of successful alarm
rate in table 6.14. The successful alarm rate with warning time greater than 10
ms is 96.56% and the successful alarm rate with warning time less than 10 ms is

3.44%. The average positive Tyuming is 165 ms and all the disruptions were
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detected before their actual occurrence. Hence, the negative T\aming is @ redundant

quantity for CM predictor in C39.
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Figure 6.17: Warning times of C39 for the CM predictor.

Even though figure 6.17 provides a general outlook on Tyuming, figure 6.18
is more useful to assess the performance of the CM predictor in C39.
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Figure 6.18: Cumulative frequency of detections as a function of Twyamine for all the detections

made with at least 10 ms of reaction time.
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6.3.2.NRMLOCA predictor detection rates

Detection rates and warning times for NRMLOCA are given in table
6.15. The successful detection rate is identical to the CM predictor but as in the
case of C38, the false alarm rate is 100%- rendering the feasibility of the detector
questionable. The average warning time for NRMLOCA is 139 ms, smaller
compared to the CM predictor by a margin of 33 ms- a duration of time which

could prove crucial for a disruption handling scenario.

Parameter Value
Successful alarm rate 100 %
Missed alarm rate 0 %
False alarm rate 100 %
Average Tiaming 139 ms

Table 6.15: NRMLOCA predictor performance for C39

Figure 6.19 represents the warning times in form of histogram and
cumulative fraction form. The similarity of successful detection rates between
CM predictor and NRMLOCA predictor can be clearly depicted in figures 6.18

and 6.19.
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Figure 6.19: Warning times of C39 for the NRMLOCA predictor. There are no bars in red,

which means there are no detections post disruption.
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6.3.3.NRMCMBLYV predictor detection rates

The performance of NRMCMBLV predictor for C39 dataset is
summarized in table 6.16. Just like NRMLOCA, the predictor obtains a 100%
successful detection rate but also, the false alarm rate is 100%, which would mean
that if the predictor is used actively for the device protection, practically every
discharge would raise an alarm- inhibiting the operator from continuing the

discharge towards achieving the scientific goal of the experiment.

Parameter Value
Successful alarm rate 100 %
Missed alarm rate 0 %
False alarm rate 100 %
Average T\aming 833 ms

Table 6.16: NRMCMBLYV predictor performance for C39

Worth highlighting is the fact that out of 100% successful detections,
82.76% are tardy detections, meaning that even if the disruptions were detected,
there was not sufficient time to allow the RTPS to react and alleviate the effects
of the eventual disruption. Also, the staggeringly high average Tyamings is caused
by several premature detections as shown in figure 6.20 (a). A detection with a
warning time ~16 s and another one of the order of ~8 s inflates the average
warning time. If these 2 outliers are removed, the average warning time falls
down to mere 7 ms, worse than NRMLOCA and ~165 ms lower than the average
Tyaming for the CM predictor. Figure 6.20 (b) depicts the tendency of Tyaming for

NRMCMBLV.
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Figure 6.20: Warning times of the complete database of C39 for the NRMCMBLYV predictor.
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6.3.4.Ir time derivative (SHRTDIDT and LONGDIDT)
As demonstrated in table 6.17, the SHRTDID has a lower false alarm

rate compared to NRMLOCA and NRMCMBLYV but it is worse compared to the

CM predictor. However, the high successful detection rate needs to be further
analyzed as in the case of previously discussed predictors. Out of 100% successful
detections, only 6.9% detections were made with a warning time in excess of 10

ms, rest 93.1% of detections were made with less than 10 ms warning time.

Parameter Value
Successful alarm rate 100 %
Missed alarm rate 0%
False alarm rate 7.2%

Average Taming 4 ms

Table 6.17: SHRTDIDT predictor performance for C39

Unlike C38, there is no outlier for SHRTDIDT and hence, the average
warning time listed in table 6.17 is absolute. Figure 6.21 shows tendencies of
warning times for SHRTDIDT where 6.21 (a) demonstrates the overall
distribution of the warning times and 6.21 (b) gives a better insight into the

warning times inferior to 10 ms.
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Figure 6.21: Warning times of the complete database of C39 for the SHRTDIDT predictor.
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Parameter Value

Successful alarm rate 100 %
Missed alarm rate 0%

False alarm rate 23.6%
Average Tyaming 7 ms

Table 6.18: LONGDIDT predictor performance for C39

Similar to C38, LONGDIDT shows that even though the false alarm rate
is better compared to NRMLOCA and NRMCMBLV, the detector still has a
scope for improvement mainly because out of the 100% successful detections,
96.6% are tardy detections, with warning times less than 10 ms. So, the effective
successful detection rate falls down to a tame 3.5%, which is lower than the false
alarm rate. Similar to SHRTDIDT, the absence of outliers means that the average
warning time given in table 6.18 is an absolute value. Figure 6.22 (b) represents

the overall distribution of warning times inferior to 10 ms.
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Figure 6.22: Warning times of the complete database of C39 for the LONGDIDT predictor.

6.3.5. Vessel Forces

Figure 6.23 and 6.24 present a comparison between the predicted vessel
forces at the instances of occurrence of disruption and the time of detection
between the CM predictor and the NRMLOCA predictor. Just like in the case of
C38, the detections made by CM predictors are on higher average values of
predicted vessel forces, making a case for early actions to cool down the plasma

or to reduce the plasma current in order to reduce the impact of eventual
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disruption on VV. It is worth noting that the difference between the mean values
of the predicted vessel forces between Taisuption and Taetection is ~150 kN for CM
predictor as compared to ~50 kN for NRMLOCA. The standard deviation values
for the predicted forces are not too far off from one another for Tgetecion and
Taisruption in case of both the CM and NRMLOCA predictors.
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Figure 6.23: A direct comparison of values of Fp at Tgetection and Taisruption for CM predictor.

Here in figure 6.25, a comparison is presented for the mean and standard
deviation values of predicted vessel forces for all the detectors of PetraMitl and
CM predictor. Maintaining the consistency with C38, the CM predictor registered
highest average values at Tierection While not being far off from the standard

deviation values.
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Figure 6.24: A direct comparison of values of Fpr at Tactection and Taisruption for NRMLOCA
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Figure 6.25. A comparison of mean and standard deviation values of Fp at Taetection and

Taisruption between different predictors.
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It is worth mentioning that unlike C38 and other future campaigns, the
detailed scenario specific analysis was not possible owing to the fact that C39 has
a rather smaller dataset in terms of disruptive discharges- which in a way is a
positive sign so as to demonstrate that the operational boundaries are being
pushed in a very careful manner to obtain maximum knowledge from an
experiment and also prepare the device for an even more important experimental
campaign. Still, with the analysis presented here, it is demonstrated once again
that CM predictor is capable of outperforming the remaining PetraMitl
predictors even in case of a DT campaign- a detail very important as will be
shown in the next sections and for the implementation of the CM predictor as a
permanent member of device protection scenarios for future DT capable devices

regardless of them being experimental or commercial fusion reactors.

6.4. JET C40A

C40A in JET was a short Tritium campaign carried out between
January-July 2021 where different types of experiments were carried out to
finalize the scientific goals for C41. However, due to a lot of starts and stops for
commissioning of various essential systems during the campaign resulted in a
small amount of experimental discharges- precisely 49 non-disruptive and 88
disruptive discharges. This means that even though a small scenario-wise analysis
can be made, it can only be an indicative one rather than a benchmarking analysis
and hence, will be skipped for C40A. Out of these 137 discharges, 15 discharges
were made for Baseline scenario scientific goals, 20 discharges were made for
Hybrid scenario scientific goals and the remaining 102 discharges were used for
several different scientific goals including cleaning pulses to remove the impurities
that might have gotten trapped in the VV due to a disruption. The campaign
proved to be an excellent rehearsal for the highly anticipated C41- also known as

DTE campaign, which is discussed in detail in section 6.5

6.4.1.CM predictor detection rates

Detection rates of the complete dataset are given in table 6.19. A very
high success rate of the order of ~99% is achieved by the CM predictor out of
which ~78.5% detections are made with warning times equal or higher than 10
ms- the criterion to define tardy detections. Remaining 20.5% of successful

detections are tardy detections. Also, in this campaign, it was the first time that
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a disruption was detected prematurely by the CM predictor with a T\aming of 19
s, which influences highly the average warning time. Removal of the outlier with
19 s Tyamine, We obtain an average of 145 ms of warning time, which is still a
reasonably acceptable value. The CM predictor obtained an average value of -5
ms for the warning times for tardy detections, the detections made post

disruptions are shown in red in figure 6.26.

Parameter Value
Successful alarm rate 98.9 %
Missed alarm rate 1.1 %
False alarm rate 26.53 %
Average Taming 363 ms

Table 6.19: CM predictor performance for the complete database of C40A
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Figure 6.26: Warning times of the complete database of C40A for the CM predictor. The bars

in red show detections post disruption.

As shown in figure 6.26, the majority of detections were made with a
Twaming between 0-0.6 s prior to the disruption- another demonstration of the
capability of CM predictor to be used for mitigation purposes. A better insight

on the overall trends of warning times can be had through figure 6.27, where the
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cumulative fraction of successful detections is plotted as a function of Tyaming. The
semilog x-axis would suppress the contribution corresponding to Tywaming < 0 s and

hence, only the warning times > 10 ms are reflected in figure 6.27.
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Figure 6.27: Cumulative frequency of detections as a function of Tyamine for all the detections

made with at least 10 ms of reaction time.

6.4.2.NRMLOCA predictor detection rates

Detection rates and warning times for NRMLOCA are given in table
6.20. Consistent with the trends observed for C38 and C39, a 100% detection
rate is accompanied by a 100% false alarm rate. Furthermore only ~55% of
successful detections were made for Tyaming > 10 ms with the remaining ~45%
detections being tardy detections. The average Tyamins value is -77 ms due to the
presence of an outlier in both the premature detection (~19 s) and tardy detection
side (- 28 s). Removal of those outliers, improves the average warning time to 23
ms, which is ~120 ms smaller compared to the CM predictor. The only
improvement from CM predictor is that no alarms were missed but that loses
significance due to the fact that the false alarm rate is 100%- meaning that every
discharge, the NRMLOCA predictor raised an alarm. The average warning time
for tardy detections -43 ms, much worse compared to the CM predictor. The
warning times of the remaining alarms after removal of the two outliers are shown
in figure 6.28. Compared to figure 6.26, the number of detections made post
disruption is quite high for NRMLOCA than for CM predictor.
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Parameter Value

Successful alarm rate 100 %
Missed alarm rate 0%

False alarm rate 100 %

Average Tyaming =77 ms

Table 6.20: NRMLOCA predictor performance for C40A
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Figure 6.28: Warning times of the complete database of C40 for the NRMLOCA predictor. The

bars in red show detections post disruption.

6.4.3.NRMCMBLYV predictor detection rates

Table 6.21 demonstrates the detection rates for the complete restrained
ring loop voltage predictor. No different to the previous campaigns discussed in
this chapter, the predictor obtains a 100% successful detection rate but also, the
false alarm rate is 100% and hence, either the alarms from this predictor are
ignored or they produce hindrance in achieving scientific goals for a given

experiment.
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Parameter Value

Successful alarm rate 100 %
Missed alarm rate 0%

False alarm rate 100 %

Average Tyarming 480 ms

Table 6.21: NRMCMBLYV predictor performance for C40A

Worth highlighting is the fact that out of 100% successful detections,
86.4% are tardy detections. Also, the staggeringly high average Tyuming is caused
by several premature detections as shown in figure 6.29 (a). As many as 4
detections were made with warning times greater than 6 s, out of which, 3 have
warning times in excess of 10 s. There is also a tardy detection with warning time
~18 s, which is also a clear outlier. If all these 5 outliers are removed, the average
warning time falls down to 48 ms, better than NRMCMBLV and ~100 ms lower
than the average Twammg for the CM predictor. Figure 6.29 (b) shows the
distribution of Tyamine for all the discharges with positive warning times. As can
be seen, a mere ~35% detections were made before the occurrence of a disruption,

rest all were a posteriori detections.
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Figure 6.29: Warning times of the complete database of C40 for the NRMCMBLYV predictor.
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6.4.4.Ir time derivative (SHRTDIDT and LONGDIDT)
The performance evaluation parameters for SHRTDIDT and

LONGDIDT are given in tables 6.22 and 6.23 respectively. For SHRTDIDT, the
average warning time has a negative value, which means that majority of the
disruptions were detected after they had already occurred because there are no

outliers in terms of very high warning times be it positive or negative values.

Parameter Value
Successful alarm rate 93.2 %
Missed alarm rate 6.8 %
False alarm rate 16.33%
Average T\aming -18 ms

Table 6.22: SHRTDIDT predictor performance for C40A

Worth highlighting is the fact that no detections were made with
sufficient Tyaming for mitigation action to be employed. In other words, all the
successful detections for SHRTDIDT were tardy detections with an average
positive warning time of the order of 1 ms. Histogram to illustrate the high
number of tardy detections is shown in figure 6.30. There is no figure with
cumulative fraction of successful detections for SHRTDIDT because a majority
of detections are made with either negative or 0 warning times, which would not

be plotted on a logarithmic x axis.

Parameter Value
Successful alarm rate 98.9 %
Missed alarm rate 1.1 %
False alarm rate 51%

Average Tyaming -29 ms

Table 6.23: LONGDIDT predictor performance for C40A
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Figure 6.30: Warning times of C40A for the SHRTDIDT predictor.

LONGDIDT has a better performance comparing with SHRTDIDT in
terms of successful alarm rate as well as missed alarms. 87.5% of the successful
detections for LONGDIDT are in fact tardy detections but when compared to
SHRTDIDT, LONGDIDT at least has 11.4% detections with warning times more
than 10 ms. The average positive warning time is 30 ms and the average negative
warning time is -68 ms. The histogram of detection count as a function of warning
time is given in figure 6.31 (a). As opposite to SHRTDIDT, there are at least
several detections with non-zero positive warning times and hence figure 6.31 (b)

represents the overall distribution of positive warning times.
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Figure 6.31: Warning times of the complete database of C40 for the LONGDIDT predictor.
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6.4.5.Vessel Forces

In case of predicted vessel forces, the trend is followed just like in the
case of C38 and C39, where the detections made by CM predictor are on higher
average values of predicted vessel forces when compared to the values of predicted
forces of disruption time. The mean value of the predicted vessel forces between
Taisruption and  Teetection is  higher by ~80 kN for CM predictor whereas for
NRMLOCA, value is lower by ~300 kN as shown in figure 6.32 and 6.33
respectively. Even though the peaks of the fitted distributions lie in the similar
ranges of the value of Fp, CM predictor has more number of detections in the
peak of distribution, meaning that a majority of detections were made while the

predicted vessel force value was the highest among the distribution of values.

The case of NRMLOCA is a curious one because the average values of
Fp at Taetection are lower by ~300 kN compared to the mean value of Fp at Taisruption,
this means that if one were to assign how perilous the disruption would be based
on this value, they could end up severely underestimating the hazardous capacity
of such a disruption. Also, the standard deviation of the Fpis different by ~120

kN, which means that there might be detections at even lower values of Fp.

The comparison between NRMLOCA, NRMCMBLV, SHRTDIDT and
LONGDIDT as shown in figure 6.34 is also interesting in terms of the fact that
all these predictors raise alarms at values of Fr in acceptable range of vicinity of
the mean and standard deviation values of Taiwuption. This however, is the only
factor where the ring loop voltage and plasma current time derivative predictors
perform better than NRMLOCA, in rest all the aspects, NRMLOCA is superior

to them but the overall dominance of CM predictor is still maintained.
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between different predictors.

6.5. JET C41

After successful preparation with C38 and C39 as well a dress rehearsal
in C40A, the much awaited deuterium-tritium experimental campaign 2 (also
known as DTE2) was carried out in the latter half of 2021 during the months of
August-December. A total of 653 discharges were produced, including dry runs
as well as cleaning discharges and also, several hundreds of vessel conditioning
shots. The principal objective of C41 was to demonstrate that DT experiments
can be done in metallic walls of JET and compare the highest net fusion energy
output to the one obtained during DTE1 (in 1990s). C41 is seen as a culmination
of ITER related preparations in JET with demonstration of working principles.
The C41 had experimental discharges programmed for 18 different types of

experiments. Some of the more important scenarios are listed in table 6.24.

Code Experiment description

M21-01 Hybrid scenario for high fusion performance in DT
M21-02 DT scenario with optimized non-thermal fusion
M21-03 Baseline scenario for high fusion performance in DT
M21-06 Integrated high performance seeded scenario
M21-12 Confinement and transport in mixed DT plasmas
M21-17 224 harmonic heating of T in DT plasmas for ITER
M21-27 F'uel retention and long term outgassing

Table 6.24: Some important experimental scenarios in C41
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Upon concerted efforts, we realized that the number of useful discharges
for the analysis of CM predictor performance is underwhelming for such an
important campaign. A total of 95 disruptive and 161 non-disruptive discharges
were considered for the analysis presented in this section. Such low number of
useful discharges is explained by the need of meticulous preparation required to
guarantee maximum efficiency of the tritium used for particular scenario
experiments and quality data production. Several experiments require very clean
machine environment, which implies a high number of cleaning/machine
conditioning discharges during the preparatory phase. Out of 256 available
discharges, 39 discharges belong to the hybrid scenario whereas 25 discharges
belong to the baseline scenario experiments. Furthermore, out of 39, 25
discharges are non-disruptive and 14 disruptive from hybrid scenario compared

to 13 non-disruptive and 12 disruptive discharges from baseline scenario.

6.5.1.CM predictor detection rates

CM predictor continued obtaining favorable detection rates throughout
the course of C41. A very high detection rate of ~99% successful detection was
achieved while maintaining the false alarm rate below 25%. A more than
acceptable average warning time of 160 ms is obtained as well. Only a solitary

alarm was missed as shown in table 6.25.

Parameter Value
Successful alarm rate 98.9 %
Missed alarm rate 1.1 %
False alarm rate 24.22 %
Average Twaming 160 ms

Table 6.25: CM predictor performance for the complete database of C41

Just like all previous campaigns, the successful alarm rate in table 6.25
has contributions from detections with warning times = 10 ms as well as tardy
alarms. The successful alarm rate with warning time greater than 10 ms is 78.9%
and the successful alarm rate with warning time less than 10 ms is 20%. The
average positive Tyaming is 177 ms whereas the average negative Tyaming is -1 ms.

As shown in figure 6.35, the number of detections with Tywaminz > 1 s is very low

121



and hence, the CM predictor emphasizes the potential usability as a mitigation
predictor.
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Figure 6.35: Warning times of the CM predictor for C41. The bars in red show detections

post disruption.

As we have done in previous sections, here we present a different
perspective on the warning times by means of figure 6.36, where the cumulative
fraction of successful detections is plotted as a function of T\amine. Warning times
corresponding to 0 and negative values are suppressed on the semi logarithmic x-
axis. It is still worth mentioning that ~87% of the detections were made prior to

the occurrence of a disruption.
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Figure 6.36: Cumulative frequency of detections as a function of Tyarming
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6.5.2.NRMLOCA predictor detection rates

The NRMLOCA predictor demonstrated no difference in the
performance compared to the previous campaigns. A 100% successful detection
rate accompanied by a 100% false alarm rate does not help in making a case for
NRMLOCA for ITER operations as shown in table 6.26.

Parameter Value
Successful alarm rate 100 %
Missed alarm rate 0%
False alarm rate 100 %
Average Taming -353 ms

Table 6.26: NRMLOCA predictor performance for C41

The average warning time in table 6.26 is skewed due to the presence of
a tardy detection with warning time of -35 s. Removal of the outlier improves
the average Tyaming to 16 ms, which would still be ~145 ms smaller compared to
the CM predictor. Moreover, the average positive Tyaming is ~57 ms, being 120 ms
smaller to the one of CM predictor. The average negative Tyumine is -9 ms,

approaching an order of magnitude worse compared to the CM predictor.
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Figure 6.37: Warning times of the complete database of C41 for the NRMLOCA predictor. The

bars in red show detections post disruption.
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A direct comparison between figures 6.35 and 6.37 shows a worse
performance of NRMLOCA in terms of number of detections a posteriori. Using
the same diagnostic signal for prediction and yet, such vast difference in the
performance is yet another proof of disadvantage of using a simple threshold
value- a point raised in section 6.2.2. The tendency has been demonstrated time
and again throughout the analysis of C38, C39, C40A- improvement in detection
time is a feature of CM predictor, obtained using a two dimensional SVM like
framework where decision boundary is expressed by a linear equation but is not

a simple threshold.

6.5.3. NRMCMBLYV predictor detection rates

The detection rates of NRMCMBLV predictor are also consistent with
the trends observed for C38, C39 and C40A. No alarms are missed but alarms
were raised for every single discharge of the database- losing meaning of the
prediction qualification. A high average warning time as reflected in table 6.27 is
a consequence of seven premature detections with warning times above 2 s, with
the highest being ~ 16 s. Removal of all the seven outliers brings the average
Tyamine down to -8 ms- in other words, except for the premature predictions, all

other predictions on average were a posteriori predictions.

Parameter Value
Successful alarm rate 100 %
Missed alarm rate 0%
False alarm rate 100 %
Average Taming 660 ms

Table 6.27: NRMCMBLYV predictor performance for C41

The 100% successful detection rate in table 6.27 comprises of a
staggering 88.4% tardy detections and mere 11.6% detections with Tyuming above
10 ms. Here it is worth remembering that out of those 11.6%, 7 are premature
detections, which we have deemed as outliers. So, in terms of actual detections
with Tywaming > 10 ms, there are only four discharges. Figure 6.38 (a) shows the
distribution of outliers according to their warning times. Frequency value
corresponding to the first bin with positive warning times also includes several
detections with T\yaming being 0 s. Figure 6.38 (b) shows the distribution of T\arming

for all the detections with positive warning times.
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Figure 6.38: Warning times for C41 for the NRMCMBLV predictor.
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6.5.4.Ir time derivative (SHRTDIDT and LONGDIDT)
SHRTDIDT and LONGDIDT are two predictors designed to detect a

sudden current quench, which could sometimes be a precursor to an impending
disruption. As seen for the previous campaigns, the performance of either of
SHRTDIDT or LONGDIDT is nowhere close the one of CM predictor. Even for
C41, SHRTDIDT obtained a negative average warning time as shown in table
6.28. All the successful detections were tardy detections with most detections

producing negative warning times, again, correctly reflected in table 6.29.

Parameter Value
Successful alarm rate 98.9%
Missed alarm rate 1.1 %
False alarm rate 8.7%
Average Tyaming -12 ms

Table 6.28: SHRTDIDT predictor performance for C41

The average values of negative warning time is ~ 19 ms whereas average
positive warning time is 1 ms for SHRTDIDT. Only 33% of successful detections
obtain positive warning times, rest 67% showed negative warning times. The
comparison of warning times is given in figure 6.39. 50% of the positive warning

time detections had a warning time less than 1 ms and the remaining 50% showed

125



a warning time of 2 ms. Due to this, there only a histogram showing warning
time distribution for SHRTDIDT and not a cumulative frequency distribution

curve.
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Figure 6.39: Warning times of C41 for the SHRTDIDT predictor.
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In comparison to SHRTDIDT, the LONGDIDT showed some
improvement in average warning time but the higher rate of false alarms was
also observed. The 98.9% successful detection rate shown in table 6.29 is a
combination of 83.1% tardy detections and only a 15.8% detection with warning

times superior to 10 ms.

Parameter Value
Successful alarm rate 98.9 %
Missed alarm rate 1.1 %
False alarm rate 29.2%
Average Tyaming -8 ms

Table 6.29: LONGDIDT predictor performance for C41

Being based on a similar working principle as SHRTDIDT, LONGDIDT
had similarities in tendencies in the performance. Identical to SHRTDIDT,
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LONGDIDT had only 33% of successful detections with a positive warning time
with mean value of 1.5 ms. Remaining 67% of successful predictions returned an
average warning time of -12 ms. Furthermore, another striking similarity was
observed in terms of 50% of the positive warning time detections being less than
1 ms and the remaining 50% having a warning time of 2 ms. This explains why

there is only a histogram in figure 6.40 as opposed to sections 6.3.4 and 6.4.4.
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Figure 6.40: Warning times of the complete database of C41 for the LONGDIDT predictor.

6.5.5.Vessel Forces

Last but not the least, the comparison of predicted vessel forces is also
carried out for C41 database. The CM predictor once again did the excellent job
by predicting the disruptions at higher mean values of Fp compared to
NRMLOCA and all the other PetraMit1 predictors. The CM predictor detected
upcoming disruptions with an average of ~100 kN higher value of Fp as shown in
figure 6.41. The standard deviation value is lower to that of disruption time,
which is a positive because this means that even if the disruption is detected at

a slightly lower value of Fp, it will not be too small to be ignored.

Predictions made by NRMLOCA were as usually, at lower values of Fp
compared to the values for disruption time. The difference being ~200 kN, which

is a significant difference, especially when it is lower. Also, as shown in figure
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6.42, the majority of predictions made by NRMLOCA were at very low values of
Fp, lower than 500 kN. This could create a severe underestimation of danger of

an upcoming disruption and result in catastrophic consequences.
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Figure 6.41: A direct comparison of values of Fp at Taetection a0d Taisruption for CM predictor.
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Figure 6.42: A direct comparison of values of Fp at Tactection and Taisruption for NRMLOCA
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Remaining predictors comprising PetraMit1 were also looked at in terms
of Fpr value comparison. Figure 6.43 shows a comparison of mean and standard
deviation values for Taetection and Taisruption. SHRTDIDT and LONGDIDT are quite
similar with NRMCMBLV also demonstrating likewise trends. Both CM and
NRMLOCA predictors are equidistant to the point of Fp closer to the average
values at Taisupion but CM predictor is on higher values of mean Fp, making it

crucial for disruption handling action.
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Figure 6.43. A comparison of mean and standard deviation values of Fp at Tqetection and

Taisruption between different, predictors.
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Chapter 7 — Discussion and Future work

In this chapter, a review of the results discussed in chapter 6 is made. Mainly the
effectiveness of the CM predictor over PetraMit1 systems. Also, a brief discussion
about how the CM predictor could be exploited better for JET, ITER and other

similar devices’ real time protection system is presented.

7.1. Feasibility of CM predictor

The CM predictor, originating from the need and idea of a simple, easily
scalable and implementable, cross device disruption predictor for mitigation
purposes, shows excellent results in the very first experimental campaign after
the real time implementation in JET. With a very straightforward
implementation and rather basic working principle where in the real time system,
after acquiring the signals for ML and Ip, the only mathematical operation needed
to check if the plasma is in disruptive state or not is a simple division, the CM
predictor should attract a lot of interest for ITER, DEMO and other ITER class
tokamaks.

The first and most important task was the preparation of a reliable
database of the JET experimental campaigns C38-C41, where intentional
disruptions and discharges where Error Field Correction Coils (EFCC) were used,
had to be ignored to truly evaluate the performance of CM predictor. The reason
for excluding the EFCC related experiments is the existence of cross-talk between
EFCC and magnetic diagnostics, causing ML amplitude signal to saturate and
thus, rendering it unusable for the CM predictor. An exhaustive database was
prepared which was useful not only for this thesis work but also for the other
activities of the disruption prediction group of CIEMAT.

Useful tools and repositories were created during the course of this work.
As a result, the analysis of the CM predictor for future real time implementations
will be a seamless task with minimum effort on the part of the scientist. The only
important factor being the reliability of the disruption database and availability
of the signals. Reliability of the database is qualified in terms of determination
of instances of disruptions with utmost precision since the computation of
warning times is directly dependent on the disruption time. Similarly, the signals

to be used for CM predictor need to be independent of any type of random offset,
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and guarantee the fulfillment of IID hypothesis to avoid any artifact caused by
possible existence of bias.

Scenario wise analysis of the CM predictor also provides insight on the
possible use of the predictor for disruption type classification- a task which could
be extremely useful for future operational conditions in order to be able to not
only detect an incoming disruption but also, know the type and choose a
mitigation method accordingly instead of causing the plasma to cool down using
MGI or killer pellets and try to have a soft landing of the discharge. Disruption
type classification could also help in finding the physics relation with the

precursor used- the Mode Locking phenomenon.

7.2. Future Work

The most exciting aspect for the future work related to the CM predictor
is its potential use at ITER and DEMO and before that, at JET and JT60- SA
to demonstrate the robustness and reliability for machine safety. Lack of a
concrete and closed model of origin and evolution of disruptive behavior in
plasma leave much to be desired from data driven methods. A possible line of
continuation of this work could be in the direction of extension of the model to
include disruption type classification, where not only the disruptions are to be
detected in advance, in addition, the identification of the type of impending
disruption could also be attempted to improve the corresponding course of action
in the lines of maintaining the discharge running and hence, improving the overall
efficiency of the reactor.

Apart from type classification, another line of research could be opened
by combining such simple models with more complex methods like anomaly
detection or genetic algorithms. Using a sure precursor like mode locking for
machine safety application while incorporating an anomaly detection algorithm
using Martingales for example, could lead to interesting results.

Independence of the model on historical data by means of possible from
scratch implementation also revolutionizes the data load handling necessities for
a data driven method like the CM predictor. Instead of having to go through
terabytes of data, using a set of select signals, a similar predictor could be
obtained. For that, a different precursor could be chosen, tried and tested for
development of a linear predictor based on the general equation mentioned in

chapter 4.
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Using all the knowledge about disruption prediction that is being created
across the globe, models based on transfer learning could also be developed. This
type of models can further advance our capacity to predict disruptions using the
information garnered across various tokamaks using different methods for
disruption prediction. Such a predictor could prove to be the ultimate predictor

with a wide range of versatility and applicability.
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