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1, Introduction 

The recent burgeoning literature on unit roots and 

coinlegt'ation has h�lped to offer insight on the special consequences 

of econometric modelling with integrated variables. A random walk is a 

simple example of an integrated process. and this model has been 

extensively used to characterise the behaviour of many economic time 

series in bolh financial and cOnlmodity market theories. Moreover, 

following from the seminal work by Box and Jenkins ( 19 7 6 ) . ARIHA 
models have been widely used because of their ability to represent the 

behaviour of many time series. Thus. the treatment of integrated 

processes both ill econometrics and statistics has expanded vet"y 

rapidly. having developed diverse applications and a new methodology, 

Applications and theory have becolllp. increasingly diffused and 

fragmented, but they share a comrnon feature, i.e. they are built upon 

an alternative asymptotic theory which lakes into accounl the 

differenl statistical analysis underlying the behaviouc in thp. 1 imit 

of this type of non-stalionary time Heries. 

In tbe absence of a textbook which incorporales in a 

comprehensive form Lhis increased diversity of results, it may be 

useful, from a pettagogic point of view, to take sLock of the most 

important cesults 1.n thi s field, interpreting such results and, also, 

comparing them to conventional central limit. theory for stat.ionary 

processes. This is the purpose of this paper and we believe that it 

could be useful to a substantial number of teachet's for preparing 

l\\aterial on this hranch of the stal:i.stiea,1 liter'ature for: i.nclusion in 

econometrics and mathematica 1 statistics courses. This, of course, 

does not preclude consultation of lhe original references, suitably 

quoted, where tletails and ext.ensions of the r'e-su1ts sumlUar�sed in this 

paper, eschewed for great.�r brevily antI �j.mpl ; city, can b� further 

analysed. 
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The statistical analysis to be presented below 

distinguishes between the unknown data generation process (DGP) and 

the assumed model. The problem to be considered is the behaviour of 

estimates and tests based on models which may not correspond to the 

DGP's . For pedagogic purposes 

first explaining the basic 

"complications" which arise 

econometric time series . 

we proceed 

ideas and 

through simple examples, 

then introducing further 

almost inevitably when analysing 

This paper is organised as follows: Section 2 develops some 

preliminary notation and introduces the basic concepts of the 

appropiate limiting distribution for integrated processes of order 

one. In Section 3 we apply the previous theory to derive the 

distributions of several tests for the existence of unit roots . 

section 4 examines results in mullivariate reg['ession models, 

including spurious regressions, detrending and cointegrating 

regressions, as well as issues related to causality tests in a 

framework of integrated variables. Finally, section 5 extends some of 

the previous results to higher order integrated and near integrated 

time series. 

2 .  Preliminary Theory 

According to the definition by Engle and Granger (198 7 ) , an 

integrated process of order d, is a stoehastic process which needs a 

d-th order differencing to achieve an invertible moving- average 

representation, also known as Wold representation . Drawing on the 

previous authors' we will denote these processes as I (d) processes. We 

will concent['ate for most of this paper on the statistical properties 

which stem from the presence of a single unit root, i.e, on processes 

which are 1(1) , and only extend the results to more general I (d) 

processes in Section 5. 

We will start by considering as the DGP, the following 

process 
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Yt
= Pb Yt-l

+ Pb
+ Ut P = 1, YO 

= 0 (t = 1, 2 • . •  ) 
b 

(1) 

or, after suitable integration 

Yt 
= � t + y* 

t ; y* 
t 

= 

a> 
where [ut

}
1 is a weakly 

sequence with spectral density 

as are linear functions 

The deviations from 

t 
St = I u. 

i=1 1 

stationary , 

(t = 1, 2 • . •  ) 

zero mean 

f· 0.). In general, 1 (1) 
u 

of time (with a slope 

this function of time, 

(2) 

innnovation 

series such 

of zero if 

denoted as 

Y*
t' are 1(1) since they are the accuTnulalion of past random Hhocks. 

Hence , in general any non-stationary series is the sunt of a 

det.f!,r:-mlni gtic ane! a stochast i e component . When cl iscussi ng the 

properties of 1 (1) series we will generally refer to the latter. 

Notice that the formulation (1) does not assume that U
t 

is a white noise disturbance, only its 1(0) nature is presupposed . 

Therefore , to complete lhe specification of the DGP we need to impose 

some conditions on the sequence These restrictions 

are necessary if non degenerate limiting distributions of the 

statistics discussed below are to be derived . A weak set of conditions 

that achieve this aim are given in detail in Phil1ips (1987a) and can 

bf!, sutnll\R.rised as fo llows: 

a> 
Assumption 1: Let [u

t
}

O 
be a stochastic process such that 

a) E (U
t

) = 0 for all t 

c) w2 = lim T-
1 E (S�) exists and w2 > 0 (ST t->CD 

T 
I u . )  

i=1 1 
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where 
2 

"' .  denoled as the long-run variance, can also 

be written as 

2 2 
<1 + 2), 

'" 

d) U
t 

is stron& ly-mixin& 

such that 

with mixing coefficients et 
m 

'" 

E a 
(1-2113) 

1 
m 

< '" 

Condition (b) restrains the lleterogeneity of the process, 

while (c) controls the nonnalisalion at a rate which ensures 

non-de&enerate limitin& distribut ions . Condition (d)  moderates the 

extent of temporal dependence in relation to the probability of 

outliers (see White (1984» . 

The generality of the previous sel of conditions implies 

that the expression in (1) encapsulates a wide variety of DGP's . These 

include virtually any ARMA model with a unit root and even ARMAX 
models with unit roots (see Andrews (1988». where the exo&enous 

variables are 1(0) . It is important to notice at this sta&e that only 

if we assume that the error term in ( 1 )  is iid{O . <1
2

) • wil.l 
2 2 

This Ca) =0 restrictive case is, however , an interest ing one 

since n\osl of the limiting distributions that have been simulated are 

based on that assumption. Nevertheless , that will not be the case in 

most emp irical 
2 2 w J;a . Note that 

applications 
2 

has 

and hence 

a very 

in general we will consider 

clear interpretation, as 

given in cond ition ( c ) ,  if we look at the frequency domain, i . e .  it is 

simply f (0). 
u 

where f (0) 
u 

is lhe spectral density al 
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frequency zero. So, for exan�le, if 

ut= <c 6 <t-1' then ,
/

= ,,:(1+6
2

) whet'eas 

u is an 
2t 2 2 

'" = " (1+6) , 
< 

HA (l) process, 

As we mentioned above, the ordinary probability limits and 

central limit theorems (CLT) do not apply in the case of 1(1) 

variables (neither in more general led), d > 1, cases). So, in order 

to derive proper limiting distributions, it is necessary, as in the 

stationary framework, to use a sequence of random variables, whose 

convergence is ensured by suilable transformations. Intuitively, when 

we are considering a time-series process which is dominated by a 

growing secular component, its evolution can be suitably smoothed by a 

choice of horizontal and vertical axis, which control for its 

explosivity and curvature respectively. 

framework, we need to f Deus on the 

More precisely, in the 1(1) 
T 

sequence (S
t}

l 
which can 

be transformed so that each element of the sequence lies in the space 

D (O, l) of all real valued functions on the interval [0,1) that are 

right continous and have finite left limits, This is achieved by 

substituting the stochastie component, denoted by y* 
t

' of the 

original series by the concentrated series. 

y� (r) , r dO,l) ( 3 )  

where [z] represents the integer part of any rational number z. In 

this way we are able to concentrate the original horizontal axis of 1 

to T, to t.he closed interval [0,1], indexing the observations by r. 

For exautple, if T : lOO, the original observation will be 

indexed by r<[50,,51) and so on, The choice of the power of T in the 

denominator of (3) is such that the series Yt 
is neither explossive 

nor converges to zero. since, for example, when U
t 

is iid(O,,,
2

) , 
2 

var(Y*T
) = " T, its standard deviation will be of order 

0(T1/2
) and this is precisely the power chosen to modify the 

ordinate axis. 
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Under Assumption 1, we have that as T tends to infinity 

(4) 

The symbol "->" here signifies weak convergence of the 
associated probability measure, while B(r) is a scalar Brownian motion 
with unit variance, also known as Wiene� process, which lies in the 
space C [0,1) of all real valued functions continuous on the interval 
[0,1]. This is known as Donsker's Theorem and the interested reader is 
referred to Billingsley (1968) and Hall and Heyde (1980) for the 
details of the proof. Note that B(r) behaves like a ['andotll walk in 
continous time, so that for fixed r, B(r) N(O,r) and has 
independent increments. 

Moreover, an extension of the Slutsky Theorem in 
conventional asymptotic theory (see, e. g. , White (1984» also applies 
in this framework, in the sense that if g(. )  is any continous function 
on CIO,l) then Y*T(r) -> � B(r) implies that 

g[Y*T(r») -> g [� B(r») (5) 

The previous results is known as the Cont.inuous Mapping 
Theorem (CMT) (see Billingsley (1968» . The most striking difference 
between conventional and this new asymptotic theory is that whereas in 
the fonner the sample moments converge to constants, they converge to 
random variables in the laller. Similarly, as a result of the absence 
of stationarily and ergodicity, traditional CLT a['e substituted by 
Functional Centt'al Limit Theorems (FCLT). 

As an example of the previous remarks, let us take the 
sample mean of {Y*t}� when ",<1 and ",=1 in (1) . In the 
1(0) case, a simple application of the law of the Large Numbers (see 
White (1984» , will show that 
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o 

Howevec, in the 1(1) case, we will have 
written in tet� of the corresponding Wiener process 

T 
T-3/2 I y* 

1 l 

T 

T 
= I It/T T-1/2 

1 t-1/T 

(6) 

that I yt ean be 
as fol ows 

11 -112 � 11 
= 0 r (T I Y[Tt/T] ) It_1/T< r <lIT d ['-> w 0 B(r) d r 1 

( 7 )  

by applieation of the CMT in (5) where i is an indieator funetion and 
g(. )  is the integral function. 

Similar teehniques ean be applied to show how the following 
standarised santple moments converge to functional of Wiener processes, 

-2 T 

2 2 
!!!.... [B(1)2 _ !!....) 2 2 

'" 

T-5/2 I t Y*t --> '" I� r B(r) 

(8) 

2 
= !!!.... [B(1)2 - 1) + � ( 9 )  2 

(10) 

Note that the differenee between the orders of magnitude of 
these limiting distributions and the conventional stationary 
distributions, Le. order of probability O(T3/2) instead of O(T) in 
( 7 ) ,  0(T2) instead of O(T) in (8), O(T) instead of 0 (T1/2) in ( 9 )  
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and 0 ( T
5 / 2

) inst.ead of 0 ( T
3/2

) in (10) . T.hese differences ,  for 

example, shed 1 ighl on the non-conventional features and on 

coefficient consistency and l imiting distributions when testing for 

unit rools . These wi l l  be analysed in the next section. 

3 .  Unit. Root. Test.s 

Exanwle 1: (Dickey-Fuller t.ests) 

with 

Let. us suppose 

- Hd(O",
2

) ,  and 

t.hat y 
t 

is generated by the DGP in (1) , 

we want lo t.est t.he nul l  hypothesis 

(11) 

that is , t.he null hypot.hesis is t.hat t.he series is a random walk wit.h 

drift as in ( 1 )  and the alternative lhat it is stationary around a 

deterministic trend . Because of the unit root under the null 

hypothesis,  it is convenient to use a transformation suggested by 

sims , St.ock and Wat.son (1990) , so that under t.he nul l ,  ( 11) can be 

rewritten as 

(12) 

3 
Z

t 
=t and 6

1 
and 6

3 
are a function of the parameters in 

(11) . The transformed regressors are linear combinations of the 

original regressors with the l inear combinations chosen to iso late the 

regressors with different slochaslic properties: constant , integrated 

process with no t ime tt'end component and a linear time trend . Given 

the rates of convergence described in ( 7 )  - (10) , the coefficient.s in 
.-
6 converge at. different. 

matrix Y
T

= diag ( T
1/2

, 

Z
t 

and 6 .  

rates; so 

T, T
3 /2

) 

we need to define the scaling 

parlioned conformably wit.h 
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With these definitions, the OLS estimator of e is given by 

e (13) 

Thus 

(14) 

where VT 

From ( 7 )  - (10) we can derive the limiting distribulion of 
the six different elements in VT and the three differenl 
0T, This is done assuming that )lb ; 0, without 
generality since having included 
a['e invariant to the true value of 

V T,l, l 
; T 

V T,1, 2 ; T 

V Ttl,3 T 

V T,2,2 ; T 

-1 t 2 -> 1 Zl,t_1 

-3/2 I Yt-1 -> " 

-2 I(t-1) 112 -> 

-2 *2 2 I Y t-1 -> " 

11 0 B([') 

1 2 10 B([') 

a t['end in (11) , 

)lb' These elements 

d[' 

d[' 

V T,2, 3 
-5/2 1 T I Yt_1(t-1) -> " 10 [' B([') d[' 

V Tt3, 3 

0 T,1,1 

0 T,1,2 

° T,l,3 

-> 

; 

; 

T-3 I(t_1)2 -> 1/3 

2 cs B(1) N(O,cs ) -

T-1 I Y*t-1 Ut -> cs2/2[B(1)2 

T -3/2 I(t-1) Ut 
2 -> N(O,cs /3) 

where the sums go f['om 1 lo T, 

- 11 

- cs 11 0 [' d B([') 

the 
are: 

elements in 
loss of 

" estin\ates e 



-12-

If , as in the Dickey and Fuller test,  we are particularly 

i.nterested in the 

choos ing the app["opiate 

" 

estimator Pc 
elements we would get 

of and 

T(p -1) -> f (B) 

and 

tp 
c 

c 

its l-ratio , tp , 
c 

(15) 

(16) 

where v22 
is the second element on the diagonal of v-I 

and f ( . ) ,  

denote generically, an appropiate combination of the funclionals of 

Wiener processes derived above . Henceforth , we will use the short 

notation f(B)  to characterise dif ferent 

note 
., 

that (p -1) converges at 

Wiener functional s .  From (15) 
-1 

rate O(T ) instead of the we a 

conventional O(T
-�/2

) ,  Similarly, from (16 ) , the corresponding 

t-ratio has a non- degenerate distribution which is different from the 

slandarlsed not1ual distribution which is used in conventional 

asympto"Hc theory . 

There are analogous express ions for general Wald statistics 

for testing, e.g. joint hypothesis of 

)l = 0 
c 

in (11) • 

the form 

Suppose 

p = I, )l 
c c 

that the 

= 0 ,  

Wald �
c 

0 or Pc 
= 1 ,  

statislic tests the q 
is 

hypothesis Re = r in (12). The test statistic 

= (Re - e)' 
T 

[R( E 
1 

Then the asymptotic behaviour of this test statistic is 

-1 -1 2 
F

T 
-> (Re - r) [R V R'] (Re-r)/o 

(17) 

(18) 
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where V is the (3x3) matrix whose elements where derived above . The 

distributions of ( 15 ) . (16)  and (18) have been tabulated by numerical 

integration procedures by Dickey and Fuller (1979. 1981) . 

Example 2 ( Augmented Dickey-Fuller tests) 

In this case we asume that the DGP is similar to ( 1 )  but 

where the DGP is an AR(p)  process with a unit root. The corresponding 

model can be approp iately parameterised as follows 

• 

Y
t 

= �c 
+ Yc 

t + Pc 
Y

t-l+ �(L) Y
t-1 

+ U
t 

(19) 

where � ( L) is a lag-polynomial of order (p-1) . Under the nul l  

= hypothesis HO: Y
c 

AR(p) generalisation of 

O. Pc 
1 .  the DGP corresponds to the 

(1) so that we can use again the transforn�tion 

where now et = 

l' 
Z

t =(11 y*
t.···. 

where 

the nul l .  Defining 

where I is an 

the scaling matrix Y
T

= 

identity matrix and 
P 

11 Y*
t 

. . .  11 
elements 

Y*
t-P+l ' 

of the V
T 

and 

so that 

matrices 

the unconditional mean under 

diag(T
1I2 

I 
p ' T

1/2
. T .  T

3/2
) 

Q the var-c.ov matrix of 
p 

E(z
ll 

z'
lt

) =  Q
p

. The 

are the same of before for 

the corresponding blocks , 

appropriately def ined 

except for the following elements t 

V -> 0 
Tl . 2  
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Therefore, V is block diagonal and the estimator of the nuisance 

parameters p are aSy11lptot.ically normal and do not affect the 

aSy11lptotic dist.ribution of the Di<:key-Full .. ,· statistics. Thus the same 

tables of r.ritical values can be used as above. 

Example 3 (Non-Parametric Tests) 

In Example 2 ,  U
t 

was assumed to be Hd(O,.
/

), whereas 

in Example 3 this assumption could only achieved after filtering by an 

AR(p) process. In general if U
t 

is any ARMA model such that 

assumption 1 is satisfied, then the AR(p) approxi.mation can be a poor 

choice. Phi 11ips and Pe[TOn (1988) have suggest.ed cart'ying out the 

test "as if" (It) was the mantained hypothesis and then modifying the 

corresponding test statistic by a non-parametric correction, so t.hat 

the tables for the AR(l) "an be still used to obtain critical values. 

To illustrate the distributional properties of this 

approach, we will choose a simple particular case of (11) where 

l' '"Y =0.  The 
c c 

straightfotward. 

extension to the more general 

Therefore the DGP is 

where U
t 

satisfies assumption 1, whilst the model is 

'" 

cases is 

(20) 

(21) 

Using the results in (7) (10) the estimator p and its t-rat io 

t have the following limiting distributions p 
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T(p-1) T(E y!_l)
-l (E Yt-1 Ut) -> (1 B(r)2 dr)-l[� [B(1)2_1) +�2)(22) ., 

t (" • 2 )112 p 
= • Yt-1 T(p - 1) -> !!! " 

1/2[B(1)2 _ 1) + �/.,2 

[I B2(r) dr) 112 
(23) 

Notice that if Ut were iid(O,,,2) then �=O and ,,2=<0>2, 
which correspond to the case of the distributions of the two statistics 
simulated by Dickey and Fuller. Note that they have been isolated in 
the first terms of the RHS of the li miting distributions in (22) and 
(23). Following this procedure Phillips and Perron, suggest 
transforming the stat.istics (22) and (23), by computing the connistent 
sample counterparts of 

Z(p) T(p-1) 1- (I B(r)2 dr)-l 2 (24) 
., 

and 

Z(tp) !!. tp - 1- (S B(r)2 dr)-1/2 ., 2 (25) 
., 

To implement 
2 w and 

the corrf'!ction factors, W� Tlp.ed consist.ent estimators of 

consistent 
the functional 
t· l of ,,2 es lma es 

of 
and 

tile 
2 ., 

Wiener 
from 

by means of the variance of the residuals, 

p['ocess; we 
the residuals 

can 
of 

get 
(21) 

and the estimator 
of the long-run variance suggested by Newey and west (1987) 

where wt (j) = 1 - jll � t. This estimator is consistent when t= O(Tl/4) 
and condition b) in assumption 1 is strengthed to sup ElutI

2�<w for some 
�>2. The Wiener functional, according to (8)  can be estimaled by 
-2 2 T E Yt-l' 
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Similar arguments can be used to obtain Z(Pi) and 
Z(lp.) (i=b,c) as given in Phillips and Perron (1988). 1 

I;:'cample 4 (Asymptotic norma lily of unit root tests) 

An interesting case which has been emphasised by west 
(1988) is when carrying out a unil root test in a model which contains 
a constant or a constant and a trend, the same nuisance parameters 
appear also under the null hypothesis of a unit root. 

For purposes of illustC'ation, let us assume that Y t is 
generated by 

with Ut - iid(O,c2) and the mantained hypothesis is 

where 

Under the null, y = t I'b t + Y*t' and therefore 

-3 r 2 2 T Yt-1 -> I'b/3 

--2 T r Yt-1 -> I'b/2 

T-3/2 2 2 r Yt-1 Ut -> N(O, c �/3) 

(26) 

(27) 

SubsbHtuting the previous eKpressions into (28) it is easy to show 
that 
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-3/2 2 2 T (Pb-I) -> N(O,12 a /p ) 

and consequently 

tPb -> N(O,I) 

(29) 

(30) 

Thus , both statistics are asyntptotically not"tnal. The 
intuition behind this result is that if the DGP is (26),the integrated 
series depends on a detet1ninislic trend an�i a stocbaslic lrend. The 
sample variability of the detenninistic trend is 0(T2) which 
dominates the sample variability of the stochastic trend which is 
OtT). But it is well known that the existence of a detenninistic trend 
in a regt'e"siotl model does not affect the asymptotic not-mality of the 
slandarised estimator, hence normality follows. 

The same result obtains when both the model and the DGP 
contain a drift and a trend. Tn this case it can be shuwn that 
5/2 ... 2 2 T (p -1)->N(O,180 a /p ) and tp ··>N(O,l) c c 

Example 5 (Unit t'oot tests with general deterministic trends) 

Following the methodology in OUliaris, Park and Phillips 
(1988), we extend the results i.n Example I, by letting Yt have the 
followi ng DGP 

Where 

p-l 
r 
1 

maintained hypoLhesis is 
The model 

(31) 

corresponding to the 

(32) 
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The null hypotheses of interest are therefore Pd�l and �p=O. 

To facilitate the derivation of the asymptotic 
distributions of the test statistics it is convenient to define 

is the 
subspace 

Bk(r) to be the stochastic process on [0,11 such that 
projection residual of the Wiener process B(r) on 

k generated by the polynomial functions 1, r ,  . . .  , r in the Hilbert 
space of square integrable functions on [0 ,1 1 .  It is also defined r p 
to be the projection of rP 

p-1 l,r . . .  r Denoting 
P 1,t, . . .  , t  we have that 

by 
on the 
p 

Yt-1' 

space spanned by the polynomials 
the projection of on 

-2 
E 

p2 2 I� B!(r) dr T Yt-1 -> 0 

-1 I P 2 [1 B (r) d B(r) T Yt-1 Ut 
-

> 

0 0 p 

T-(2p+1)/2 I tP Ut 
1 -> o 10 r d B(r) p 

and therefot·e 

(34)  

Notice that (15) , (16) and (17) are particular cases of 
( 33 ) , ( 34 )  and ( 35) for p=l. The cort"esponding distt"ibutiolls of (33) -
(35) have been tabulated by OUliaris , Pat"k and Phillips ( 1988) up to 
p=5. 
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Example 6 (Recur'sive and Sequential statistics) 

Following the analysis of Banerjee, Lumsdaine and Slock 
(1989), we can extend the tests fot' unit roots considered in examples 
1 and 2 to two types of statistics: recursivH and sequential 
statistics. The sequence of recursive stat.istics is computed 
recursively over sub,;amples of length k, for k = kO . . .  T where ko 
is a startup value; the sequential statistics are computed using the 
full sample, where the statistics in the sequence vary by incrementing 
the date of the hypothetical break (or shift point). To illustrate the 
working of this approach we will o.onsider a DGP as in (1), while the 
alternative hypothesis corresponding to the computation recursive and 
sequential statistics are given respectively by 

(36) 

and 

(37) 

i .  e. a shift. in the drift. Choosing a 
linear combination with zero mean regt'essors as in (12), we can write 
the "ecursi ve and sequent.ial OLS estimator corresponding lo (36) and 
(37) as 

e (0) 

e (0) 

where To = k 
Zt = (I, Yt.-1) 

[To] 
( I "'t-1 1 

T 
= (I Zt_1 [TO] 

1 

(k = kO" .TJ 
in (38) 

-1 [TO] 
Zt_1) ( I Zt_1 Yt) 1 

-1 T 
Zt_1 [To]) (I Zt_1 [TO] Yt) 1 

in (38) and k = kO ' "  T-kO in 
and Zt = (I, Y1t' Yt-1) in 

(38) 

(39) 

(39), 
(39). 
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Choosing scaling matrices Y
T 

= dieg 
(T

l/2
, T

l/2
, T) respectively we have that 

and 

where 

(T
I/2

,T) and 

R 2 
011 

(6) -> N(O , 0 . 6) 

R 6 
V

12 
(6) -> 0 1

0 
B(r) dr 

and 

s 2 
0U(6) - >N(O ,s ) 

(40) 

(41) 

Several remarks serve to highlight different features of 
the previous results. First, the as�rrptotic representations (40) apply 
for 6�6

0
>O, 

those in 
i.e. it accounts for start up observalions, while 

(45)  apply for 0<6
0

�6�(1-6
0

)<l, i.e. requires a 
ntrinunin&"value. Second, the results apply uniformly in 6 ,  i. e, the 
"marginals at any fixed 6 are simply those that would be obtained 
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using conventional argumenu. Third, the results can be extended lo 
olher lest-statistics like t-ratios, F-tests, etc. as well as to other 
hypothetical breaks, e.g. shift and/or jump in trends, etc. Critical 
values have been compuled using simulation procedures by Perron (1989), 

Banerjp.e, Lumsdai ne and Rt()(!k (1989) and Banerjep., Dolatlo and 
Galbraith (1990) . 

4 .  Mullivariate Regression Models 

We now extend the prey] ous analysis to regression models 
containing several integrated var.iables which may be co integrated , 
including time trends. 

Example 7 (Spurious delrending) 

This case, anQly�"d by Durlauf and Phillips (1986 ) ,  deals 
with the issue of innapropiate de-·trending of integrated pt'ocesses, 
under Lhe lraditional belief that convenlional aSYlIlplotic: theory could 
be applied lo de-lrendp.d lime series . 
DGP given in (1) and consider the mod.,l 

Then, from (I), since 

(42 ) can be [·ewr i Hen as 

Therefore 

y* l p � (y - �)t � el 

Let 

(42) 

(43) 
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(E t2)(Eyt) - (Et)(Et yt) 

"'T 

(y - �) = 

T(Et yt) - (Et) (E yt) 
"'T 

2 2 where "'T = T E t - (Et) 

Using the limiting distributions in ( 7 )  - (10), it is easy to show that 

-112 ... 1 1 T l' -> 4 0 10 B(r) dr - 6 0 10 r B(r) dr 

112 ., 1 1 T (Y-�)->12 0[/0 r B(r)dr-1/2 10B(r)dr] 

Similarly it can be shown that 

--1/2 T l -> f(B) Y 

T-1/2 t -> f(B) 
l' 

-1 '2 T 0 -> f(B) e 

2 
R -> f(B) 

TOW -> f(B) 

(44) 

(45) 

where f (B) are generic funclionals of Wiener processes as in (44) and 
(45). 

From the previous results, we observe that the A 
Y 

estimator is consistent, converging to its tnle value lib at a rate 
0(T-1I2). However, its t-ratio diverges to infinity, confirming the 
Monte Carlo results of Nelson and Kang (1981). Both the drift and its 
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t-ratio diverge. The estimated variance of the 
also diverges, reflecting the fact that the residuals 

residuals (02) e 
of the model are 

integrated around the trend. The coefficient of multiple correlation 
(R2) converges to a non-degenerate limiting distribution. The 
results for the Durbin-watson statistic appear quite promising, 
confirming its powerful role as a misspecification diagnostic (see 
Sargan and Bhargava (1983» . 

Example 8 (Spurious Regression) 

To illustrate the consequences of running regression models 
where variables are spuriously related (as discussed by Yule (1926) 

and Granger and Newbold (1974» , we apply the previous limiting 
distribution to the following case (see Phillips (198 7 » . Let 

.. .. [Yt}l and [xt}l 
be generated by the following DGP. 

where Ut iid(O,o�) and E(Ut .s) = 0 vt, s 

The regression model is 

(46) 

(4 7) 

(48) 

To facilitate the derivation of the asymptotic distribution 
of the estim.ators and test-statistics in (48) it is convenient to 
define 0 B (r) and 0 B (r) to be the Wiener u u • • 

processes on [0 , 1) obtained from the disturbances in (46) and (47) . 

The limiting distributions in (7) - (10) can be applied to this case 
plus the following cross-moment limiting distribution derived in a 
similar fashion 
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(49)  

Therefore. the OLS estimator of p and � in (48)  are 

such that 

-112 " 1 2 
T P -> !I B o £ (1

1
0

B ) (1
1
0

B B )] £ £ U 
(50) 

(51) 

where the differentials in the notation of the corresponding integrals 

have been ommiled for simplicity in the nolation. 

Similarly it is easy to show that 

-1 ,,2 
T ,, -> f (B) 

£ 
T

-1/2 
t -> f (B) p 

-112 
T t

� 
-> f(B) 

2 
R -> f (B) TOW --> f (B) 

where again f(B) ,\enote generic functionals of the Wiener processes 

corresponding t.o t.he first. and second moments of Yt. and xt.' 

This case int.erprets Lhe familiar Monte-Carlo results of 

Granger and Newbold (1974). reinforcing analytically the divergence of 

despit.e t.he "Il R
2 

facl that and have non-degenerate 

distrihutions . Again, as jn Rxample 6 the DW stat.istic detect 

misspecificalion of the model . Finally, it is important to not 1 ce that 

if we d .. trended the 

coeffi.c ient of the 

variables entering the 
-1/2 

trend is OtT ) and is 

['egression model, the 

therefore consist.ent. 

The orders of magnitude of the remaining estimators are the same. 

Example 9 ( Cochrane-Orcutt. pt'Clcedure) 

except that. without 

implies the following DGP 

and 

lOSH 

be generated as in Example 8 .  

geneT·ality. E ( U
t 

E
t

) � o. This 
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(52) 

(53) 

The regression model, 

for simplicity, is 

abstcacting f[,om the constant term 

(54) 

(55) 

In a classic paper, Coch,""ne ami Orcutt (1949) suggested 

estimation of (13, p) by quasi-diffe."encing the data: 

A " 
where p 
obtained 

( E  e
t 

e
t_I

) 
A 2 " 

I T. e
t_I

' e
t 

being the OL:; r"p.siduals in (54) 

from the OLS estimator 1! in (54 ) "  Then apply OLS to the 

transformed equation 

y* 
t 

where under the DGP, 
N 

distributi.on of 13, it is 
A A 

distribution of 13 and p" 

know that 

A 
13 - 13 -> f(B) 

as in (51) , where now 13 p 0 

(56) 

U
t

" To obtain the asymptotic 

necessary to obtain first t.he asymptotic 

Since (54) is a "spurious regre�sionHJ wc 

(5 7 )  

Similarly, under the DGP 

" 
T (p - 1) -> f(B) (58) 
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since 

-2 "2 
T t et_1 = 

given (49) and (57) (note that. xt 
and e

t 
are 1 (1» , and 

" 
2 1 

+ (�-�) T- t ct xt_1 -> f (B) 

Therefore, from ( 5 7 )  and (58 ) , it can be shown that � in 
A 

(56) tends to � ,  a constant, not t.o a random variable as does � .  

This is so since 

and 

" )
2 (t  Y"t Y"t.) I (t x t. 

-1 2 -1 
T t A xt. - 2 (p-1) T t ct. xt_1

+ 

2 
� " c 

Hansen (1990), relying upon the previous results, has 

suggested obtaining the second-st.age estimator of p, by computing 
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� 
where et are the second-stage residuals, as defined in (56) . 

Given that 

y 
since (13-13) is 0(1) , and 

Therefore 

(59) 

which is identical to the distribution of the univariate Dickey-Fuller 

unit root test. The advantage of the test based upon (59)  over the 

cointegration test discussed in Examples 7 and 8, is that it does not 

depend on the number of variables included in the regression model 

<constrained for simplicity lo a s.ingle regressor in these examples). 

This independence of dimensionalily is intportant since the critical 

values presented in Sargan and Bhargava (1983) or in Engle and Yoo 

(1987)  reveal that the asyn�totic distributions of the test statistics 

shift away from the origin as the dimensionality increases, and this 

is expected to reduce power. 
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Example 10 (Co integrating Regression) 

with Ut - iid(O, a�), 

Kroeneckerts delta. 

<
t - iid (O,a!), E (Ut <s) = '\s au<, 

From (61) we can see that 

substituting (61 )  in (60) and differencing we get 

(60) 

(61) 

where 0ts is 

x
t 

is 1(1 ) . 

i.e. Yt 
is 1KA(1,1) and therefore 1(1) as well. There is however a 

linear combination of Yt 
and xt 

given by (60) which is 1(0). The 

estimator of � in the regression model 

Yt 
= 

is given by 

A 

� = 

The 

A A 

� X
t 

+ U
t 

[t 2 -1 
xt) [t xt Yt) = � + [t 

limiting distribution of 

2 -1 
xt) 

-2 
T 

the correspond ing express ion in (8) , whilst 

[t xt Ut) (62) 

t 2 
is given by xt 

to get the limiting 

distribution of it is convenient to condition U
t 

on 

<
t 

such that 

2 2 Y = C1 Id ' d 
Uf: &' V 

Then it is possible to show lhat 

2 2 2 .:: d - cs Id 
U Uf: C 
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a v 1
1 B d B o < v (63) 

Since <t and vt are independent by construction, it 
can also be shown using similar arguments to the Mann and Wald (1943) 

Theorem that conditional on the a-algebra � = a(B (r) O<r<I). v 

1
1 B d B o < v -> N(O, 1

1 B2) o < (64) 

and therefore 

[Il B2)-1/2 o < 11 B o < d B -> N(O,I) v (65) 

The previous asymptotic distributions are known as "mixture of 
norma ls ,. (henceforth l1N) (see Billingsley, 1968). 

Substituting (8) and ( 6 3 )  into (60) we get 

(66) 

and 

(67) 

A 
So, in general, f3 is a "super-consistent .. estimator of 

P (see Stock (1987» but its t-ratio will not have a standard 
distribution unless y = 0, i.e. xt is exogenous (weakly and 
strongly in this example). In fact when y � 0 the first term in 
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(66) gives rise to the so called "second-order" or "endogeneity" bias 
(see Phillips and Hansen (1988) and Gonzalo (1989» which, though 
asymptotically neglegible, can be important in finite samples, as 
emphasised by Banerjee et al. (1986). 

Similar arguments can be used lo show that 

T(l - R2) -> f(B) 
DW -> 2 

The laller result obtains because Ut has been assumed to 
be iid. If it were correlated then DW -> 2(1-P1), where PI is 
the first order aulocorrelation. If a constant lerm, lI, is included 

1/2 "-in the model, then T \I -> f(B). 

The existence of nuisance parameters is also important in 
this case. Let us suppose that xt is generated by 

Then xt is dominated by a linear trend and hetu:e 

(68) 

The reason why (68) obtains is that lhe linear combinati.on 
(1,-�) not only co integrates y l ami xt but also their respective 
trends. This is seen by noticing that substituting (67) in (60) and 
differenclng we get 

6 Y = � \I + � £ + 6 Ut t. t. 

i.e. Yt has a linear trend with slope �. 

If a linear. trend is included in the model, then the 
aSYlllptotic normality in (68) disappears, since the equation can be 
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reparameterised as a regresssion model with a linear trend and zero 
mean regressors, and results similar to ( 6 6 )  hold. 

Example 11 (Fully Modified Estimator) 

From ( 6 6 )  we have seen that the elements of the 
coinlegrating vector converge to their t�e values super-consistently, 
i. e. at a rate 0(T

-1
) ,  but the asymptotic distribution of their 

test-statistics is non-standard, unless the regressor satisfies 
certain exogeneity properties. Phillips and Hansen (1988) in a similar 
vein lo the non-parametric approach examined in Example 3, have 
proposed a non-parametric correction which converts the distributions 
of the transformed estimators into "mixture of normals". 

To illustrate the nature of the approach, consider the DGP 
given in ( 60)  and ( 6 1 ) .  The conditional distribution of Yt on xt 
can be written as 

so that estimation by OLS of J3 and y in this model is equivalent 
to estimating (60)  and ( 61) by full-information n18ximum likelihood. It 
is easy lo show that in this case 

and 

112 � 2 2 
T (y-y) -> N(O, 0 10 ) 

V £ 

Since the asymptotic variance-coy 
is diagonal, Phillips and Hansen propose 
regression of the residuals in (60)  

estimating J3 in a Recond step in the model 

matrix of and 
estimating from 

and then 
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which is asymptotically equivalent to the FIML estimator. 

The 
cases as ., 
{xt}l have 

previous procedure can 
the 
the 

following example 
DGP given by 

be extended to 
illustrates. 

(60) and (61) 

more 
Let 
where 

(ut' <t) are assumed to have the following "long-run" variance 

Then, since w 

wu< ) 
= 2 • f(O) 

.,2 < 
B (r)=y u ., < B (r)+ < ., v B (r) v 2 u 

Y= w lw , we have that u< < 

-1 1 2 1 2 T I x v > .,  I B d B + ). - y[., lOB d B + ., I t t - I: Wu 0 £ U £ £ £ £: 

where }. is now the non contemporaneous long run covariance 

(70) 

now 

( 71) 

with 

( 72) 

Then, subtituting., d B (r) = y., d B (r) + .,  d B (r) in (72) we get u u £: £ V V 

-> ., < 11 B d B "'v 0 £ V 

which is a "mixture of n01"1\\als" according to (64). 

(73) 

Subslituting (69) into (73) we get the so called "fully 
modified estimator", given by 

-2 a ) < (74) 
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where 'Y. 
residuals 

2 �. and � can be 
• 

in (60) and (61) using a 
consistently 
truncating lag 

estimated from 
l = 0(T

1I4). 
the 

The corresponding t-ratio is given by 

where notice that in the c.omputation of conventional "standard errors" 
calculated by 
"-

statistical packages "­
<1 

U 
is to be substituted by 

w .  v 

Example 12 (Causality Tests) 

By means of a s imp le examp le, we can use the theoretical 
arguments developed in Examples 10 and 11, to analyse the consequences 
of having 1(1) variables when examining two co.unon tests of linear 
restrictions in applied work: a test for the number of lags with which 
a variable should enler a regression equalion and a ··causality" or 
predictability test that contemporaneous or lagged values of one 
variables do not enter the equation for a second variable. To simplify 
the discussion without loss of generality we abstract from drifts. A 

general It"eatment can be found in Sims, stock and Watson (1990) and an 
application to efficiency tests in Banerjee and Dolado (1988) . 

.. .. Let {Yt}l and {xt}l 
(46) and (47) , where the regression model is 

A A 

Y = t "0 xt+ "I 
xt_1+ 

A test of the null 
1 is HO:"O=<>l=O or 

of the appropiate lag 
5 6 HO:"2=0 or HO:"1=<>2=0. 

., 

"2 Yt-1+ et 

hypothesis "x 
2 

HO:"O+<>l=O 
length is 

have the DGP in 

(75) 

does not Granger-cause y" 
whereas 

3 HO: "0= 0 
a test 

4 HO: "1= 0, 



convenient 

where Zt 
and 62 = 

that 

VT and eT 

V T,l,l -> 

V T, 1,2 -> 

V T,1,3 -> 

V T,2, 2 -> 

V T, 2 , 3  -> 

V T,3,3 -> 

<I> T,l,1 -> 

+T,1, 2· -> 
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Because under the DGP, Yt follow a random walk it is 
to rewrite (75) as 

., " " A ., A 

IIYt= 60 11 xt+ 61 xt_1+ 62 Yt-1+ e ::::; t 6 ' Zt+et ( 76 )  

Choosing a scaling matrix YT=diag 
1/2 (T ,T,T), we have 

The limiting distributions of the different elements in 
are 

2 a 
< 

0 

0 

2 11 B2(r) dr a 
< 0 < 

a a 11 B (1') B ( 1') dr u < 0 u < 

2 1 2 a 10 Bu (r) dr u 

N(O , 
2 a2) a u < 

a a I B (1') d B (1') - a a N ( O ,  I B2) u < u < u < u 



c1JT,l,3 -> 

2 " 
....!!.... 
2 [B (1)2 -11 u 
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Therefore V is block 
the estimator of 00(-1) 
in�lies that a test like H� 
standarised normal distribution. 

diagonal with respecto to A xt and 
is asymptotically normal. This 
in ( 6 5 )  follows asymptotically the 
Similarly since the reparametrisation 

in ( 6 6 )  is identical to that having A xt Xt as 
now with o = -Cl< 0 3 1 and 

and 
the same 

1 HO' 

regressors, 
argument 

applies 
6 HO' are 

to HO ' However 
functionals of the Wiener 

for 
processes given above 

2 5 HO' HO' 
and the 

corresponding t and F test-statistics do not follow standard 
distributions. 

Let us assume now that 
£ t =ut_1 in ( 4 7 )  , then by 

substraction of ( 4 6 )  from ( 4 7 )  , we find that Yt and xt are 
coinlegraled with cointegrating vector (1,-1) ; L e, 

( 7 7 )  

In this case the limiting distributions of VT , 2, 2' 
V are identical and the corresponding submatrix does not have T,3,3 
full rank, reflecting the asymptotic perfect collinearity between 
Xt_1 and Yt-l given in ( 7 7 ) . However in this case (75) can be 
reparameterised as follows 

A A A A 

AYt= 0' 0 A xt + O' l(Yt_l-Xt_l) + 0 ' 2 Yt-l + et ( 78) 

By similar arguments as before it can be shown that by 
choosing the scaling matrix YT= diag(T

1/2, T1I2 ,T) , the 
corresponding VT matrix is a diagonal matrix an that the joint 
distribution of the estimator of 0 ' and 0' is asyn�totically 2 1 
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slandard 

1 2 
hence HO or HO in 

dislribulions. This 

- 36 -

( 75 )  can also be lesled using 

result can be generalised lo 

lhe 

any 

coinlegraling veclor in ( 78 )  and in general can be slaled as fol lows : 

Parameters that can be rewritten as coefficients on mean zero , 

non-inlegraled regresors will be asymplotically nonnally dislribuled , 

while any olher coefficienls wi ll have non-non\\al asymplotic 

distributions . 

5 .  Extensions lo Higher Order and Near-Inlegraled Variables 

It should be noled lhal lhe resulls 

examples examined above can be generalised 

differencing d>l as follows . 

... 
Lel {y'\l

l 
be an slochastic 

fo llowing Wold represenlalion 

d (l-L) Y*
l = u

l' y*O : . . .  = Y*-d 
= 0 

... 
where (u

l
ld has lhe same properties 

expanding (l-L) -d around L=O we gel 

l 
I e(l-j ) uj 

j :d 

oblained 

lo any 

process 

as in 

with e ( l-j ) =f ( l-j+d ) / f ( d) ( t-j ) ! ,  where f ( . )  is 

in all lhe 

degree of 

wilh lhe 

( 79 )  

(1) . Then 

( 80)  

the gamma 

function such thal f ( d ) =(d-1) ! .  Then il is possible lo substilule 

for the original Y*
l 

with lhe concenlrated series 

[Tr] 

S
[Tr] 

I e( [Tr) - j )  u .  
j:d J 

Y; (r) = 

T
d-1/2 T

d-1/2 (81) 

Under Assumplion 1 ,  we have thal as Tto> 
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* ( ) ( ....!!!.... 
I

r d-1 
YT 

r -> w B
d 

r) = r ( d )  0 
( r-d) d B

d
( S ) ( 82 )  

where B
d

( r) is a scalar d
t.h 

Billingsley ( 1968) and Gourieroux, 

order 

Maurel 

Wiener process ( see 

and Monfort ( 1988» . 

Int.egrating by part.s, it is easy t.o derive t.he following particular 

cases 

= B(r)  

r I o  B(r)  dr 

et.c. 

Similarly, t.he limiting dist.ributions in ( 8 )  - (10) , will generalise 

as follows 

-2d I *2 
T y 

t. 

-d 
T I Y*

t.-1 

T
- ( d+3/2) I 

-> 2 
I

1 
W 0 

2 
u

t. 
-> w 

t. y* -> 
t 

2 
B

d
( r )  dr ( 83 )  

I
1 
0 

B
d

(r)dB(r)  (84)  

w I 1 
0 

r B
d

( r )  dr ( 85 )  

Final ly , i t  shou ld be remarked that several simulation 

exercises have shown lhat the discriminatory power of test statistics 

for the presence of unit roots is low against the alternative 

hypot.hesis of roots which are close to unit.y . This is exp lained 

because alt.hough we have shown t.hat there is a discontinuit.y bet.ween 

the distribution theory applicable to stationa['y and integrated cases , 

t.hat. discontinuity only holds in the limit. , and for f inite samp les t.he 

dist.ributions are nUJch more similar. Phillips ( 1987b, 1988 ) , has 

developed an asymptotic theory for near integrated variables , which 

helps t.o bring t.oget.her t.he apparently divergent theories mentioned 

above . The following example, relat.ed to testing for a unit root., 

tries to clarifly the issue. 
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Example 13 (Near-Int.egrated Variables) 

.. 
Let {Yt

}
l 

be generat.ed by t.he fol lowing DGP 

(86)  

where p = exp (e/T) t where c is a fixed number and U
t 

satisfies 

assumption 1. Not.e t.hat when c=O , Y
t 

is an 1 ( 1) process and when 

c�O, ( 6 )  represents a local alternative to H
O

: c = O .  

To derive t.he limiting distribut.ion of t.he test st.atistic 

for H
O ' it is convenient to define the following functional ,  also 

known as Ornst.ein-Uhlenbeck or diffussion process 

K
c

(r) = B ( r) + c I� exp ( c ( r-s» B ( s )  ( 8 7 )  

where B ( r )  i s  a unit variance scalar Brownian motion , and K ( r )  i s  a 
c 

2 
Gaussian process ,  so that. for f ixed r ,  K (r) = N( O , ( I exp ( c ( r-s» ) .  

c 

Us ing similar arguments as in Section 1 ,  it is possible to 

prove that. as Tt<><>, 

and 

( 88) 

(89) 

(90) 

Since p = 1 + c/T +0 ( 1 ) , it is easy t.o prove that the OLS 
A 

est.imat.or of p in ( 8 6 )  is such t.hat. 

(91) 



When 

and we recover 
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the non-centrality parameter 

the main distributional result 

c=O , K (r) _ B(r) , 
c 

of the Dickey-Fuller 

test statistic . From ( 91 ) , it can be observed that the effect of 

near-integration entails a shift in the location as wel l  as in the 

shape of the limiting distribution , though the convergence rate is 

identical, i . e  O(T
-1

) .  
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