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1. Introduction

The recent burgeoning literature on unit roots and
cointegration has helped to offer insight on the special consequences
of econometric modelling with integrated variables. A random walk is a
simple example of an integrated process, and this model has been
extensively used to characterise the behaviour of many economic time
series in both financial and comwmodity market theories. Moreover,
following from the seminal work by Box and Jenkins (1976), ARIMA
models have been widely used because of their ability to represent the
behaviour of many time series. Thus, the treatment of integrated
processes both 1in econometrics and statistics has expanded very
rapidly, having developed diverse applications and a new methodology.
Applications and theory have become increasingly diffused and
fragmented, but they share a common feature, i.e. they are built upon
an alternative asymptotic theory which takes into account the
different statistical analysis underlying the behavioucr in the limit

of this type of non-stationary time series.

In the absence of a textbook which incorporates in a
comprehensive form Lhis increased diversity of results, it may be
useful, from a pedagogic point of view, to take slock of the most
important results in this field, interpreting such results and, also,
comparing them to conventional central 1limit theory for stationaty
processes. This is the purpose of this paper and we believe that it
could be useful to a substantial number of teachers for preparing
material on this branch of the statistical literature for inclusion in
econometrics and mathematical statistics courses. This, of course,
does not preclude consultation of the original references, suitably
quoted, where details and extensions of the results summarised in this
paper, eschewed for greater brevity and simplicity, can be further

analysed.



The statistical analysis to be presented below
distinguishes between the unknown data generation process (DGP) and
the assumed model. The problem to be considered is the behaviour of
estimates and tests based on models which may not correspond to the
DGP's. For pedagogic purposes we proceed through simple exanples,
first explaining the basic ideas and then introducing further
“complications™ which arise almost inevitably when analysing

econometric time series.

This paper is organised as follows: Section 2 develops some
preliminary notation and introduces the basic concepts of the
appropiate limiting distribution for integrated processes of order
one. In Section 3 we apply the previous theory to derive the
distributions of several tests for the existence of unit roots.
Section 4 examines vresults in multivariate regression models,
including spurious regressions, detrending and cointegrating
regressions, as well as 1issues related to causality tests in a
framework of integrated variables. Finally, Section 5 extends some of

the previous results to higher order integrated and near integrated

time series.

2. Preliminary Theory

According to the definition by Engle and Granger (1987), an
integrated process of order d, is a stochastic process which needs a
d-th order differencing to achieve an 1invertible moving-average
representation, also known as Wold representation. Drawing on the
previous authors' we will denote these processes as I(d) processes. We
will concentrate for most of this paper on the statistical properties
which stem from the presence of a single unit root, i.e, on processes
which are 1I(1l), and only extend the results to more general I(d)

processes in Section S.

We will start by considering as the DGP, the following
process



Y= Pp Yeat Wpt Up 3 pp= 1 ¥y =0 (b =1, 2...) (1)

or, after suitable integration

= X o yk = = = .
Y =W t + YE s yF =8, = I u, (t =1, 2...) (2)

where {ut}: is a weakly stationary, 2zero mean innnovation
sequence with spectral density fu(l). In general, I(1l) series such
as yt are linear functions of time (with a slope of zero if
W o= 0). The deviations from this function of time, denoted as
y*t, are I(l) since they are the accumulation of past randowm shocks.
Hence, in general any non-stationary series is the sum of a
deterministic and a stochastic component. When discussing the

properties of I(1l) series we will generally refer to the latter.

Notice that the formulation (1) does not assume that u
is a white nolse disturbance, only its 1(0) nature is presupposed.
Therefore, to complete the specification of the DGP we need to impose
some conditions on the sequence {ut}:. These restrictions

are necessary if non degenerate 1limiting distributions of the
statistics discussed below are to be derived. A weak set of conditions
that achieve this aim are given in detail in Phillips (1987a) and can
be summarised as follows:

Assumption 1: Let {u be a stochastic process such that

©
t}o
a) E(ut) =0 for all t

b) sup ElutlB < o for some B > 2

T
c) W2 = lim T ! E(S;) exists and w2 > 0 (ST = L u,)
t->o i =



2 .
where « , denoted as the long-run variance, can also

be written as

m2 =0 + 2N\
E(uluj)

(e}
where dz = E(ui), A= I

t
such that

d) u is strongly-mixing with mixing coefficients o

L a-2B
m

=™ 8

Ccondition (b) restrains the heterogeneity of the process,
while (c) controls the normalisation at a rate which ensures
non-degenerate limiting distributions. Condition (d) moderates the
extent of temporal dependence in relation to the probability of

outliers (see White (1984)).

The generality of the previous set of conditions implies
that the expression in (1) encapsulates a wide variety of DGP's. These
include virtually any ARMA model with a unit root and even ARMAX
models with unit roots (see Andrews (1988)), where the exogenous
variables are I(0). It is important to notice at this stage that only
if we assume that the error term in (1) is iid(O,dZ), will
m2=o . This restrictive case 1is, however, an interesting one
since most of the limiting distributions that have been simulated are
based on that assumption. Nevertheless, that will not be the case in
most empirical applications and hence in general we will consider
w Aaz. Note that mz has a very clear interpretation, as
given in condition (c), if we look at the frequency domain, i.e. it is

simply 2w fu (0), where fu (0) is the spectral density at



frequency zero. So, for example, if u is an MA(1) process,

t
-0 € 2

u then ¢ = oz(1+62) whereas w2= a§(1+6)2.

t= €t t-1°

As we mentioned above, the ordinary probability limits and
central 1limit theorems (CLT) do not apply in the case of 1I(1)
variables (neither in more general I(d), d > 1, cases). So, in order
to derive proper limiting distributions, it is necessary, as in the
stationary framework, to use a sequence of random variables, whose
convergence is ensured by suitable transformations. Intuitively, when
we are considering a time-series process which is dominated by a
growing secular component, its evolution can be suitably smoothed by a
choice of horizontal and vertical axis, which control for its
explosivity and curvature respectively. More precisely, in the 1(1)
framework, we mneed to focus on the sequence [St]t which can
be transformed so that each element of the sequence lies in the space
D(0,1) of all real valued functions on the interval [0,1) that are
right continous and have finite left limits. This is achieved by
substituting the stochastic component, denoted by y*t, of the

original series by the concentrated series.

S
LTrl ¢ efo,1]

y% (v) = T1,2 (3)

where [z] represents the integer part of any rational number z. In
this way we are able to concentrate the original horizontal axis of 1
to T, to the closed interval [0,1), indexing the observations by r.
For exawmple, if T = 100, the original observation Yeo will be
ﬁndexed by re[50,.51) and so on. The choice of the power of T in the
denominator of (3) is such that the series yt is neither explossive
nor converges to zero. Since, for example, when uy is iid(O,az),
vaE(y*T) = 02 T, its standard deviation will be of order
0(T1/2

ordinate axis.

) and this is precisely the power chosen to modify the



Under Assumption 1, we have that as T tends to infinity
Y*T(t‘) -> @ B(r) (4)

The symbol "->" here signifies weak convergence of the
associated probability measure, while B(r) is a scalar Brownian motion
with unit variance, also known as Wiener process, which lies in the
space C[0,1] of all real valued functions continuous on the interval
[0,1]. This is known as Donsker's Theorem and the interested reader is
referred to Billingsley (1968) and Hall and Heyde (1980) for the
details of the proof. Note that B(r) behaves like a random walk in

continous time, so that for fixed r, B(r) = WN(O,r) and has

independent increments.

Moreover, an extension of the Slutsky Theorem in
conventional asymptotic theory (see, e.g., White (1984)) also applies
in this framework, in the sense that if g(.) is any continous function
on C[0,1] then y*T(r) -> w B(r) implies that

g[y*T(r)] -> glw B(r)] (5)

The previous results is known as the Continuous Mapping
Theorem (CMT) (see Billingsley (1968)). The most striking difference
between conventional and this new asymptotic theory is that whereas in
the forwmer the sample moments converge to constants, they converge to
random variables in the latter. Similarly, as a result of the absence
of stationarity and ergodicity, traditional CLT are substituted by

Functional Central Limit Theorems (FCLT).

As an example of the previous remarks, let us take the
sample mean of {y*t}'{ when o<l and <=1 in (1). ITn the
I(0) case, a simple application of the law of the Large Numbers (see
White (1984)), will show that



IT
PLim T ~ L y*x =0 (6)

since E(y*t) =0

However, in the 1I(1l) case, we will have that g y* can be
written in terms of the corresponding Wiener process as follows

T T
T2 v§ = Tas XF beseh ezsr)’ < L T Yierm ¢ F
1 1 1 t-1/T
1T 12 i 1
= - X —
IO i (T b y[Tt/T]) 1775 T <t/T d r-> w IO B(r) d r (@D)

by application of the CMT in (5) where 1 is an indicator function and

g(.) is the integral function.

Similar techniques can be applied to show how the following

standarised sample moments converge to functional of Wiener processes,

T
T2 3 ytz - I; Bz(r) dr (8)

L

2 2 2
-1 ) 2 o _w 2
% - @ _9 e _

T Iy 1Y 2 [B(1) mz] =3 [B(1) 1] + n (9)
T—S/2 It y*t -> w I; r B(r) (10)

Note that the difference between the orders of magnitude of
these limiting distributions and the conventional stationary
distributions, i.e. order of probability O(T3/2) instead of O(T) in
(1), o(t?) instead of O(T) in (8), O(T) instead of o(T*’?) in (9
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5/2 3/72
and O(T ) instead of O(T ) in (10). These differences, for
example, shed 1light on the non-conventional features and on
coefficient consistency and limiting distributions when testing for

unit roots. These will be analysed in the next section.
3. Unit Root Tests
Example 1: (Dickey-Fuller tests)

Let us suppose that Yo is generated by the DGP in (1),

with u, ~ i,id(O,dz), and we want to test the null hypothesis

H : = = 0, in the model
g” g Y 2

A A Tal -~

Yo =M.+ Y, t + Pe Yo 1 9 (11)

that is, the null hypothesis is that the series is a random walk with
drift as in (1) and the alternative that it is stationary atround a
deterministic trend. Because of the unit root under the null
hypothesis, it 1is convenient to use a transformation suggested by
Sims, Stock and Watson (1990), so that under the null, (11) can be

rewritten as
A
y, = 0' 2z +u (12)

1 2 3 1 2
e t_ = = K= -
where zt-[zt, zt, zt] and © [01, pc,63}, where z, 1, L e pbt.,

zi:t and 01 and 03 are a function of the parameters in

(11). The transformed regressors are linear combinations of the
original regressors with the linear combinations chosen to isolate the
regressors with different stochastic properties: constant, integrated
process with no time trend component and a linear time trend. Given

the rates of convergence described in (7) - (10), the coefficients in
8 converge at different rates; so we need to define the scaling

. . 1/2 2
matrix YT= diag (T , T, T3/ ) partioned conformably with

zt and ©.
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With these definitions, the OLS estimator of © is given by

A T 1 T :
. =
0 = (I z, 4 zt-l) (% Y yt) (13)
2 2
Thus
X [5 —el =v'o (14)
T S e T
here V. = Y.© % ' Yo' and 0 =TT ¥
where Yo %% %54 g Rttty *ha Yy
From (7) - (10) we can derive the limiting distribution of
the and the three different elements in

six different elements in VT

GT. This is done assuming

generality since having included

are invariant to the true value of

that By = o, without loss of

A
a trend in (11), the estimates ©

"b' These elements are!

-1 2
Vpp,=T BTz, g1
-3/2 1
Ve1,2 =7 'y, , >0 l,B(dr
v =12 5(t-1) > 172
T,1,3 -
-2 2 2 .1 2
= * - " .
v1',2,2 T Ly*x ,->0 f,B(r) dr
-5/2 1
Vpa2,3=T Dy (1) > oS0 B(r) dr
-3 2
Vp,33 =T t-1)° > 1/3
0 > N(o 2) = o B(1)
T,l,l - ,d =
-1 2 2
= > 4 _ _
0, 1.2 =T T¥y%_;u —> o /2[B) 1]
—3/2 2 _ 1
0r,1,3 =T Z(t-1) u, —> N(0,6°/3) Z o I r d B(r)

where the sums go from 1 to T.
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If, as in the Dickey and Fuller test, we are particularly
interested in the estimator of »p and 1its t-ratio, tpc,

c
choosing the appropiate elements we would get

T(;c~1) -> f (B) (15)

and

ke T(p -1) -> £(B) (16)

te, = [
where V22 is the second element on the diagonal of Vul, and £(.),
denote generically, an appropiate combination of the functionals of
Wiener processes derived above. Henceforth, we will use the short
notation f(B) to characterise different Wiener functionals. From (15)
we note that (}; -1) converges at a rate O(T—l) instead of the
conventional O(T /2), Similarly, from (16), the corresponding
t-ratio has a non-degenerate distribution which is different from the
standarised normal distribution which 1is wused in conventional

asymptotic theory.

There are analogous expressions for general Wald statistics

for testing, e.g. joint hypothesis of the form P =1, ¥, =0,

Yc =0 or P. = 1, u, = 0 in (11). Suppose that the Wald

statistic tests the q hypothesis RO = r in (12). The test statistic

is

- T o N R 3
Fo = (RO - 0)° [R(i z, o %l )7 BAITT (RBI-6Y/c an

Then the asymptotic behaviour of this test statistic is

F, -> (R6 - r) [R v! R'l'l (Re-r)/c2 (18)
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where V is the (3x3) matrix whose elements where derived above. The
distributions of (15), (16) and (18) have been tabulated by numerical
integration procedures by Dickey and Fuller (1979, 1981).

Example 2 (Augmented Dickey-Fuller tests)

In this case we asume that the DGP is similar to (1) but
where the DGP is an AR(p) process with a unit root. The corresponding

model can be appropiately parameterised as follows

- -~ -~

Yy v v Y b Hp ¥+ By, Lty (19)

where B(L) is a lag-polynomial of order (p-1). Under the null

hypothesis Ho: Yc = 0, pc = 1, the DGP corresponds to the

AR(p) generalisation of (1) so that we can use again the transformation

A A
iy L
yt ] zt_1 + ut
where now ©' = (B', © P 6,) and 2z' K = (zl‘ z2 z3 24) with
] 2% el pl t Ertin 1 i~

-

1 . = 4
= t 3 ¢4 %* = = = =yX = s =
z, (A y groe Ay t—p+1) with Ay t-i Ayt—i B Zy y I z =y* =y, W, t, z, t,

where ﬁb =EAy, = (1——53(1))_1 My i.e, the unconditional mean under
k£ 1/2 1/2 3/2
the null. Defining the scaling matrix YT= diag(T Ip’ T », T, T )
where Ip is an 1identity matrix and Qp the var-cov matrix of
3 2 3 ! = .
Ay ERE Ay t-p+1’ t z lt) Qp The

elements of the VT and DT matrices are the same of before for

so that E(z1

the corresponding ©blocks, except for the following elements,
appropriately defined
—-1

- ' Nt
Yora =% 250 Fopa 79

VT1,2 -> 0
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VT(1.3) -> 0
VT(I,A) -> 0

2
GT,I;I -> N(0,o Qp)
Therefore, V is block diagonal and the estimator of the nuisance
parameters B are asymptotically normal and do not affect the
asymptotic distribution of the Dickey-Fuller statistics. Thus the same

tables of c¢ritical values can be used as above.
Example 3 (Won-Parametric Tests)

In Example 2, u,  was assumed to be iid(o,az), whereas
in Example 3 this assumption could only achieved after filtering by an
AR(p) process. In general if uy is any ARMA model such that
assumption 1 is satisfied, then the AR(p) approximation can be a poor
choice. Phillips and Petrron (1988) have suggested carrying out the
test "as if™ (11) was the mantained hypothesis and then modifying the
corresponding test statistic by a non-parvametric correction, so that

the tables for the AR(1l) can be still used to obtain critical values.

To 1illustrate the distributional properties of this
approach, we will choose a simple particular case of (11) where
uc=1c=0. The extension to the more general cases is

straightforward. Therefore the DGP is

Yo =¥, YUy (20)

where ug satisfies assumption 1, whilst the model is

A A

Yo =P Yy ty, (21)

Using the results in (7) - (10) the estimator 3 and its t-ratio

tp have the following limiting distributions
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-~

Tl =TIy, DT Ty, u) - U B a0 B e
w

172 e 120807 - 1] + e’

o (f B2 (c) dr1t’?

-~ 2 -~
tp = (o Xy ) T(p - 1) - (23)

Notice that if ut were iid(o,oz) then A\=0 and 02=w2,
which correspond to the case of the distributions of the two statistics
simulated by Dickey and Fuller. Note that they have been isolated in
the first terms of the RHS of the limiting distributions in (22) and
(23). Following this procedure Phillips and Perron, suggest
transforming the statistics (22) and (23), by computing the consistent

sample counterparts of

2(p) = T(p-1) - 55 ¢ B(o)? apyt (24)
w
and
2(tp) = % tp - L; (s B(o)? ary 12 (25)
@

To implement the correction factors, we need consistent estimators of
A, wz and the functional of the Wiener process; we can get
consistent estimates of 02 and mz from f{he residuals of (21)
by means of the variance of the residuals, 32, and the estimator

of the long-run variance suggested by Newey and West (1987)

~ A X T PR
o L ui +2 I w() I uou ]
3l t=j+l J

1/4
where wo (j) =1- j/1 + 2. This estimator is consistent when L= 0(T v/ )

and cond1t10n b) in assumption 1 is strengthed to sup Elu | B<w for some

B>2. The Wiener functional, according to (8) can be estimated by

-2 2
T z yt-l'
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Similar arguments can be wused to obtain Z(pi) and

Z(tpi) (i=b,c) as given in Phillips and Perron (1988).
Example 4 (Asymptotic normality of unit root tests)

An interesting case which has been emphasised by West
(1988) is when carrying out a unit root test in a model which contains
a constant or a constant and a trend, the same nuisance parameters

appear also under the null hypothesis of a unit root.

For purposes of illustration, let us assume that yt is

generated by

Y =Wy + ¥ 4 tU (26)

t

2
with u, ~ iid(0,0 ) and the mantained hypothesis is

t
Y =¥ ¥ P N g Y Y (27)
where
) e T I Ty 5k T
3/2 Eailly bel £
T (Pb—l) = 3 2 4 2 (28)
NS A 2l 0B o)
t-1 G

Under the null, yt =y t + y*t, and therefore
-3 2 2
T z yt—l -> ub/3
-2

TS Ly, | -> w2

-3/2 2 2
T z Y1 Y ™ N(O,oc /3)
Subsbtituting the previous expressions into (28) it is easy to show

that
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T‘3’2 (pb—l) -> N(0,12 ozlvz) (29)

and consequently

tpb -> N(0,1) (30)

Thus, both statistics are asymptotically norwmal. The
intuition behind this result is that if the DGP is (26), the integrated
series depends on a deterministic trend and a stochastic trend. The
sample wvariability of the deterministic trend is 0('1‘2) which
dominates the sample variabhility of the stochastic trend which is
0(T). But it is well known that the existence of a deterministic trend
in a regression model does not affect the asymptotic normality of the

standarised estimator, hence normality follows.

The same result obtains when both the model and the DGP
contain a drift 4nd a trend. Tn this case it can be shown that

5/2 . 2 2
T (Bc-1)->u(o,180 o"/u") and tp ->N(0,1)
Exanple 5 (Unit root tests with general deterministic trends)
Following the methodology in Ouliaris, Park and Phillips

(1988), we extend the results in Example 1, by letting Yo have the
following DGP

p-1 "
Yy = ugt i Yy t o+ Ye 1 * Y (31)
Where u, < iid(o.uz). The model corresponding to the

maintained hypolhesis is

A P - X - ~
yt:. pd+i'ykt. +'°dyt—1+"t (32)
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The null hypotheses of interest are therefore pd=1 and Bp=0.

To facilitate the derivation of the asymptotic
distributions of the test statistics it is convenient to define
Bk(r) to be the stochastic process on [0,1] such that Bk(r) is the
projection residual of the Wiener process B(r) on the subspace
generated by the polynomial functions 1, r,..., rk in the Hilbert

space of square integrable functions on {0,1]. It is also defined r

to be the projection of r? on the space spanned by the polynomials

l.r...rp—l Denoting by yz_l, the projection of Vi1 on
1,t,...,tp we have that

-2 . p2 2 1.2

T z yt_1 -> o Io Bp(r) dr

-1 P 2 1

T I Y1 Y ~> © Io Bp(r) d B(r)

-(2p+l)/2 P 1

T It u —>o Io rp d B(r)
and therefore

" | P 1 = .
T(pd—l) =[L yt-ll [Z Ye 1 ut] -> (IO Bp(r) d B(r)) (Io B (r)dr)(33)
1 T .2 -1/2
tpg > (IO Bp(r) d B(r)) (IO Bp(r)) (34)
1 2 .1 2 -1 1 1 2 -1

F(pd,Yp) -> [(J'o Bp(r) d B(r)) (Ion(r)ﬁr) +(I0 rp d B(r))(IO rp) 1(35)

Notice that (15), (16) and (17) are particular cases of
(33), (34) and (35) for p=l. The corresponding distributions of (33) -
(35) have been tabulated by Ouliaris, Park and Phillips (1988) up to
p=5 .
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Example 6 (Recursive and Sequential Statistics)

Following the analysis of Banerjee, Lumsdaine and Stock
(1989), we can extend the tests for unit roots considered in examples
1 and 2 to two types of statistics: recursive and sequential
statistics. The sequence of recursive statistics 1is computed
recursively over subsamples of length k, for k = ko...T where ko
is a startup value; the sequential statistics are computed using the
full sample, where the statistics in the sequence vary by incrementing
the date of the hypothetical break (or shift point). To illustrate the
working of this approach we will consider a DGP as in (1), while the
alternative hypothesis corresponding to the computation recursive and

sequential statistics are given respectively by

yt = ny + Py, yt-l + ut (36)

and

~ ~ -~ af

Ve =¥y Py Nap YAy Yeg v Y (37
where Y.“_- = ﬂ(t;ko), i.e. a shift in the drift. Choosing a
linear combination with zero mean regressors as in (12), we can write

the recursive and sequential OLS estimator corresponding to (36) and
(37) as

. [T8) 18]

8 (& =C L z .z ) I z . y) (38)
1 1

i T 1 T

O (&) = (I 4IT8) gy 87 (X2 [T8] y) (39)

where T§ =k (k:ko...'l‘) in (38) and k.—.ko...'l‘—ko in (39),
z, = (1, ) in (38) and z, =(,7Y

t Vi1 t 1w’ ) I 9.
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1/2 :
Choosing scaling matrices Y, = diag (T ,T) and YT=G185

T
(T1/2,T1/2,T) respectively we have that

A -
Y, (6(8)-0) —> vRes) LR (&) (40)
and
Y, (6(8)-0) —> vt o (&) (41)
where
R R 2
V11 (8) -> & : 011 (8) —> N(O, o . &)

2
R $ R o 2
v12 (8) -> o Io B(r) dr ; 011 (8) —> 2 [B"(8) - &1

R 2 8§ .2
sz (8) > ¢ Io B (r) dr
and
s s s 2
v ,(8)->1 § Vo (8)->1-8 0,,(8)->N(0,s")
¥ A5)-5i-8 s V2 (8)-50 1 1B()d 5 05 (8)->N(0,0°8)
s G i VgghRi=od J gRLEARE i Bygasi-aliReG

2 2

2
s 1 o 1 3 a8 o 2
V13(6)~>a Io B(r)dr : V33(6)->a IO B (r)dr £ 013(6)—2 [B(1) -1]

Several remarks serve to highlight different features of
the previous results. First, the asymptotic representations (40) apply
for 6)60>0, i.e. it accounts for start up observations, while
those in (45) apply for 0<6056g(1—60)<1, i.e. requires a
"trinming"value. Second, the results apply uniformly in §, i.e, the

"marginals at any fixed & are simply those that would be obtained
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using conventional arguments Third, the results can be extended to
other test-statistics like t-ratios, F-tests, etc. as well as to other
hypothetical breaks, e.g. shift and/or jump in trends, etc. Critical
values have been computed using sinulation procedures by Perron (1989),
Banerjee, Lumsdaine and Stock (1989) and Banerjee, Dolado and
Galbraith (1990).

4. Multivariate Regression Models

We now extend the previous analysis to regression models
containing several integrated variables which may be cointegrated,

including time trends.
Example 7 (Spurious detrending)

This case, analyscd by Durlauf and Phillips (1986), deals
with the issue of innapropiate de-trending of integrated processes,
under Lhe traditional belief that conventional asymptotic¢ theory could

be applied to de-trended time series. Let {yt}: have the
DGP given in (1) and consider the model

~ -~ -

Y =u+ Yt + e (42)
Then, from (1), since
= £ * =
Y =y b2 % =8
(42) can be rewritten as
- -
YE=w t Yy —wdt + e (43)

Therefore



(z tz)(iyt) - (6t ¥R
wT

H =

T(It y:) - (Zt) (I Yt)

(v - ub) = ¥y

2 2
where WT =TI t - (It)

Using the limiting distributions in (7) - (10), it is easy to show that

T_ll2 %> 4ag I; B(r) dr - 6 © I; r B(r) dr (44)

Tl’z(§—ub)—>1z slig © B(r)dr-1/2 I B(r)dr] (45)

Similarly it can be shown that

I
Y

T 1/2 tu -> f(B)

-1 ~2
T o, ~> f(B)

R2 —> f(B)

TDW —> f(B)

where f (B) are generic functionals of Wiener processes as in (44) and
(45).

From the previous results, we observe that the ?

estimator is consistent, converging to its true value Yy at a rate
-1/
o(T 1 2). However, its t-ratio diverges to infinity, confirming the

Monte Carlo results of Nelson and Kang (1981). Both the drift and its
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t-ratio diverge. The estimated variance of the residuals (32)
also diverges, reflecting the fact that the residuals of the model are
integrated around the trend. The coefficient of multiple correlation
(Rz) converges to a non-degenerate limiting distribution. The
results for the Durbin-Watson statistic appear quite promising,
confirming its powerful role as a misspecification diagnostic (see

Sargan and Bhargava (1983)).
Example 8 (Spurious Regression)

To illustrate the consequences of running regression models
where variables are spuriously related (as discussed by Yule (1926)
and Granger and Newbold (1974)), we apply the previous limiting
distribution to the following case (see Phillips (1987)). Let
[yt}r and {xt}: be generated by the following DGP.

¥, = yt—l +u, (46)

X, =X + ¢ 47)

where u, ~ iid(O,dﬁ), e, ~ iid(O.df) and E(ut cs) = 0 Vt,s

t t

The regression model is

~ ~ -~

yt =u+pB xt + et

(48)

To facilitate the derivation of the asymptotic distribution
of the estimators and test-statistics in (48) it 1is convenient to
define du Bu(r) and dc Be(r) to be the Wiener
processes on [0,1) obtained from the disturbances in (46) and (47).
The limiting distributions in (7) - (10) can be applied to this case
plus the following cross-moment limiting distribution derived in a

similar fashion
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-2 1
T Ix y ->0 0 [,B(r)B(r)dr (49)

Therefore, the OLS estimator of u and B in (48) are

such that
-1/2 A 1.2 1 2.-1 1.2 1 1 1
T » - [IOBC - (IOBS) | I, [(IOBs)(IOBu - (IOBC)(IOBCBU)] (50)
i 1.2 1 2.-1 1 1 1
B -> [IoBe - (IOBE) ] (au/os)[J'OBuBc - IoBu Ioéc] (51)

where the differentials in the notation of the corresponding integrals

have been ommited for simplicity in the notation.

Similarly it is easy to show that

L ’&i -> £(8) ; T /2 b, > £®) ; 7 1/2 tg > £(B)

Rz -> f(B) ; TDW -> f(B)

where again {(B) denote generic functionals of the Wiener processes

corresponding to the first and second moments of yt and x, .

This case interprets the familiar Monte-Carlo results of
Granger and Newbold (1974), reinforcing analytically the divergence of
tB despite the fact that ﬁ and R2 have non-degenerate
distributions. Again, as in Fxample 6 the DW statistic detect
misspecification of the model. Finally, it is important to notice that
if we detrended the variables entering the regression model, the
coefficient of the trend is O(T-llz) and is therefore consistent.

The orders of magnitude of the remaining estimators are the same.

Example 9 (Cochrane-Orcutt procedure)

@ -]
Let now {Yt}l and {xt}1 be generated as in Example 8,
except that, without 1loss of generality, E(ut ct) # 0. This
implies the following DGP
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Ay, =BAx +u (52)

X =X + e (53)

The regression model, abstracting from the constant term

for simplicity, is

piB Xk 8,

=
1

(54)

L =Pe vy (55)

In a classic paper, Cochtane and Orcutt (1949) suggested

estimation of (B, p) by quasi-differencing the data:

" _/\
Yo =¥~ P ¥y
* A
i Rl Tt
h P ze? _, e being th $ residuals in (54
where p = (& et et—l) / T et—l’ et eing the OLS residuals in (54)

obtained from the OLS estimator ﬁ in (54). Then apply OLS to the

transformed equation

ps (56)

* ='v
v R R

where under the DGP, A et = ut. To obtain the asymptotic

distribution of E, it is necessary to obtain first the asymptotic
distribution of B and ;. Since (54) is a "spurious regression”, we
know that

A

B-8->f(B) (57)
as in (51), where now B £ O

Similarly, under the DGP

T(p - 1) -> £(B) (58)
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» 2 3"
1~ B-B) x .1 =T (B-B) I xe +o(l)—> £(B)

given (49) and (57) (note that X, and e, are I(1)), and

+3 - o | 8 il
T LA e & 4 = T I u e . - (B-B) T [Z u o x o+ £.e

- 2 -1
+ B-B) T z € X1 -> f(B)

Therefore, from (57) and (58), it can be shown that E in
~N
(56) tends to B, a constant, not to a random variable as does B.

This is so since

Y X yx £ 2
B=(Zy v Y t) /7 ( X, )
and
it} 2 ok " 2 -1 2 - -1
T D =T Idx-(p-1)x ,1" =T IB8x -2-1)T Le x .+
i B 2 2
He-D T fx > E(e) =0
Tl xk yx =T L £ A (‘ 1) 7L [z A +ZIA ]
t ¥t © Yo S B 7 \RT Ye %1 X Yeq
- I, | 2
+(p-1) T I Ye 1%e1 = E(A ' A xt) =B o

Hansen (1990), relying upon the previous results, has

suggested obtaining the second-stage estimator of p, by computing
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where Et are the second-stage residuals, as defined in (56).

Given that
g 2 o~ z =¥ 3 ol o8
T e ,=T Ile - (B-B) X, .1 =T I et—l_Z(BFB)T e % 4
~ -2 2 2 Jdia2
+ (B-B) T 2 xt_1 -> °h Io Bu
~
since (B-B) is o(1l), and
T_l IAe e = T_IIA e, - (B-B) A x,] [e - (B-B) x, .1 =
L at-%na t t t-1 o
-3 ~ -1 TN e, |
=T % u ey -(B-B) T [& u o x o+ % N et-ll + (BB T I € ¥ 1
2.2
-> 1/2 cuIBu(l) - 1]
Therefore
T(P-1) -> 1/2 [B2(1) -1] / It B2 (59)
u 0 u

which is identical to the distribution of the univariate Dickey-Fuller
unit root test. The advantage of the test based upon (59) over the
cointegration test discussed in Examples 7 and 8, is that it does not
depend on the number of variables included in the regression model
(constrained for simplicity to a single regressor in these examples).
This independence of dimensionality is important since the critical
values presented in Sargan and Bhargava (1983) or in Engle and Yoo
(1987) reveal that the asymptotic distributions of the test statistics
shift away from the origin as the dimensionality increases, and this

is expected to reduce power.
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Example 10 (Cointegrating Regression)

(-] o«
Let now [yt}1 and {xt}1 be generated by

= + 60
= 61
A b 4 [ >4 ( )
H'th ~ i d(o ~ i 'd(o ) E( ) B 6 [} Nhe[‘e 6 S
1 Ul 11 y O ), Cl 11 ,a 9 Ul € l 'Y | 1

Kroenecker's delta. From (61) we can see that xt is I(1).

Substituting (61) in (60) and differencing we get

Ay =Bet+ﬂut
i.e. Yo is IMA(1,1) and therefore I(1l) as well. There is however a
linear combination of y, and x, given by (60) which is I(0). The

t t
estimator of B in the regression model

is given by

” 2 -1 2 -1

B =12 xt] [z X yt] =B+ [Z x. ] [z X, ut] (62)
PP . . . -2 2 . .

The 1limiting distribution of T T X, is given by

the corresponding expression in (8), whilst to get the 1limiting
distribution of I xt ut, it 1is convenient to condition u on
€ such that

u =Y € + V 9 ‘ = 0O /G Y o = g [+] /G
>4 u €
“h-ere E(sl v ) = 0

Then it is possible to show that
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-1 -1 -1
T b X, u, = T I xt(Y £ + vt) = T z (xt_1 + st) (y e, + vt)
-1 2 -1/2
=T [y £ xt—l st +yvy I ct + I xt—l vt] + 0O(T )
2 2 1
-> Y ae/2 [Be(l) + 1] + as ov Io Bc d Bv (63)

Since €y and v, are independent by construction, it

can also be shown using similar arguments to the Mann and Wald (1943)

Theorem that conditional on the o—algebra:;’= o(Bv(n) O<r<1).

1 1 _2

Io Bc d Bv -> N(0, IO Be) (64)
and therefore

1_2-1/2 1

[Io Bc] IO Be d Bv -> N(0,1) (65)

The previous asymptotic distributions are known as "mixture of

normals” (henceforth MN) (see Billingsley, 1968).

Substituting (8) and (63) into (60) we get

. 2 2 " - 0 (B T |
T(B-B) —> [¥ oclz [Bc(l) + 1] + o, 9, Io Bc d Bv] (ce I BE) (66)
and
2
Y/2 IBc (1) + 1]
E. =5 + N(0,1) (67)
B g [fl B2]1/2
u 0 "¢

N
So, in general, f 1is a '"super-consistent" estimator of

B (see Stock (1987) but its t-ratio will not have a standard
distribution wunless vy =0, 1i.e. x is exogenous (weakly and

t
strongly in this example). In fact when Yy # 0 the first term in
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(66) gives rise to the so called "second-order” or "endogeneity" bias
(see Phillips and Hansen (1988) and Gonzalo (1989)) which, though
asywptotically neglegible, can be important in finite samples, as

emphasised by Banerjee et al. (1986).
Similar arguments can be used to show that

T(1 - R?) -> £(B)
DW -> 2

The latter result obtains because ug has been assumed to
be 1iid. 1If it were correlated then DW -> 2(1—p1), where Py is
the first order autocorrelation. If a constant term, w, is included

in the model, then T /2 3 _> £(B).

The existence of nuisance parameters is also important in

this case. Let us suppose that x, is generated by

t

Then xt is dominated by a linear trend and heunce

T3/2 (B—B) -> N(0, 3 ai 0212) (68)

The reason why (68) obtains is that the linear combination
(1,-B) not only cointegrates yt and xt but also their respective
trends. This is seen by noticing that substituting (67) in (60) and

differencing we get

A =
yt Bu+pB ct + A ut

i.e. Yo has a linear trend with slope B.

If a linear trend is 1included in the model, then the

asymptotic normality in (68) disappears, since the equation can be
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reparameterised as a regresssion model with a linear trend and zero

mean regressors, and results similar to (66) hold.
Example 11 (Fully Modified Estimator)

From (66) we have seen that the elements of the
cointegrating vector converge to their true values super-consistently,
i.e. at a rate O(T_l), but the asymptotic distribution of their
test-statistics is non-standard, unless the regressor satisfies
certain exogeneity properties. Phillips and Hansen (1988) in a similar
vein to the non-parametric approach examined in Example 3, have
proposed a non-parametric correction which converts the distributions

of the transformed estimators into "mixture of normals".

To illustrate the nature of the approach, consider the DGP

given in (60) and (61). The conditional distribution of y, on xt

can be written as

¥ = B X, + v A X, + V. (69)

so that estimation by OLS of B and Yy in this model is equivalent
to estimating (60) and (61) by full-information maximum likelihood. Tt

is easy to show that in this case

1

T(EB) ity /o Ut B dB]=MN
B TR Bgev, %% Y0 " wive

and
TllZ(?‘Y) -> N(O, oi/ai)

Since the asymptotic wvariance-cov matrix of X, and

A X, is diagonal, Phillips and Hansen propose estimating <y from

the regression of the residuals in (60) on A xt and then

estimating B in a second step in the model



_32_

»
Yt -y A xt =f xt + ut (70)

which is asymptotically equivalent to the FIML estimator.

The previous procedure can be extended to more general
cases as the following example illustrates. Let {yt]:.

{xt}T have the DGP given by (60) and (61) where now

(ut, ct) are assumed to have the following "long-run" variance

wﬁ Wue
Q = =2 w £(0) (71D)
w?
Th i = .
en, 2s1nce wu Bu(r) Y w_ Bc(r)+ ©, Bv(r) with
Y= w /w , we have that
ue €
-1 1 2.1 2
T "L X, v > e o IOBc d Bu+ A - Y[chOBc d Bc+ wel (72)

where A is now the non contemporaneous long run covariance

-]
A= I E(e, u)
k=1 0 'k

Then, subtituting w d B (r) =y w dB (r) + w d B (r) in (72) we get
u u € € v v

-1 2 1
T I x —(A-v ms) -> 0 w, I

0 Bc d Bv (73)

t t
which is a "mixture of normals" according to (64).

Substituting (69) into (73) we get the so called "fully
modified estimator"”, given by

~

4+ 2.-1 N L T
B =(Z xt) [z X, (yt -y A xt) - T(A - ¥ oc) (74)
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where Y, A, and wi can be consistently estimated from the

residuals in (60) and (61) using a truncating lag % = O(Tlld).

The corresponding t-ratio is given by

2. .1V2

At
= (B -B )(Z xt) / w, -> N(0,1)

t
B
where notice that in the computation of conventional "standard errors"”

calculated by statistical packages Gu is to be substituted by
A

w .
v

Example 12 (Causality Tests)

By means of a simple example, we can use the theoretical
arguments developed in Examples 10 and 11, to analyse the consequences
of having I(1l) variables when examining two common tests of linear
restrictions in applied work: a test for the number of lags with which
a variable should enter a regression equation and a "causality" or
predictability test that contemporaneous or lagged values of one
variables do not enter the equation for a second variable. To simplify
the discussion without loss of generality we abstract from drifts. A
general treatment can be found in Sims, Stock and Watson (1990) and an

application to efficiency tests in Banerjee and Dolado (1988).

Let vy. 1> d (x> h th DGP i
e v an x 1 ave e in

(46) and (47), where the regression model is

A A Y
= 7
yt ao xt+ al xt—1+ az yt~1+ et (75)

A test of the null hypothesis "x does not Granger-cause y"

. 1 2
S : =, = H =
1 Ho ao—ul 0 or Ho ao+a1 0 whereas a test

of the appropiate lag length is H: a.=0 Ho: a,= 0,

5 6
Ho.a2=0 or Ho.alscz-o.
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Because under the DGP, Yt follow a random walk it is

convenient to rewrite (75) as

A A A A o A
Ayt= 60 A xt+ 01 xt_1+ 02 yt_1+ et: (5} zt+et (76)
= ? L] - 2 £ iy
where zt & (Axt, xt—l’ Yt—l) and © = (60, 61, 62) with eo = a5 91—a0+a1

= -1
and 02 32

Choosing a scaling matrix YT=diag (TI/Z,T,T), we have
that
A -1
YT[Ome] = VT IT
where V.= Y X £ 2 2'. Y.© and =Y.' £z u
Pt ¥ T t ; A G R : M o

The limiting distributions of the different elements in

V_ and
T @_ are

T
2
V11 7 %%
Vp,1,2 >0
VT,1,3 -> 0
2 .1 _2
VT,2,2 -> o, Io Be(r) dr
\'J -> 06 o Il B (r) B (r) dr
T,2,3 u € 0 u r € r
2 .1 _2
VT,3,3 -> o, IO Bu(r) dr
2 2
¢T,1,1 -> N(O, % oe)
I B(r) d B (r) = N(O IBZ)
¢r,1,2-'> % % u € =% % ’ u
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$p.1,3 7>

Therefore V is block diagonal with respecto to A x, and

the estimator of 90(=a1) is asymptotically mnormal. This

implies that a test 1like Hg in (65) follows asymptotically the
standarised normal distribution. Similarly since the reparametrisation
in (66) is identical to that having A X, and X, as regressors,

—&y and 01= a1+a.2 4 the s;xme zargumerslt

However the test for Ho, Ho, Ho,

i ©
now with 0

applies to H .

o w4

Hg, are functionals of the Wiener processes given above and the
corresponding t and F test-statistics do not follow standard

distributions.

Let wus assume now that ctuut 1 in (47), then by

substraction of (46) from (47), we find that ' and xt are

cointegrated with cointegrating vector (1,-1); i.e,
Yy, = X, + € an

In this case the limiting distributions of VT 2.2°
? ?

VT 3 3 are identical and the corresponding submatrix does not have
’ ’

full rank, reflecting the asymptotic perfect collinearity between

xt_1 and yt—l given in (77). However in this case (75) can be

reparameterised as follows

A A A A
Ayt= 5] 0 A x, + (2] 1(yt_l-xt_l) + 06 2 Vi1 + e, (78)
where 60 = ey, 61=(a0+q1), 62 = (a0+a1+u2n1)

By similar arguments as before it can be shown that by

1
choosing the scaling matrix YT= diag(TI/Z,T /Z,T), the
corresponding VT matrix is a diagonal matrix an that the joint

distribution of the estimator of 9'2 and 9'1 is asymptotically
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normal, hence H; or Hg in (75) can also be tested using the
standard distributions. This result can be generalised to any
cointegrating vector in (78) and in general can be stated as follows:
Parameters that can be rewritten as coefficients on mean zero,
non-integrated regresors will be asymptotically normally distributed,
while any other coefficients will have non-normal asymptotic

distributions.

5. Extensions to Higher Order and Near-Integrated Variables

It should be noted that the results obtained in all the
examples examined above can be generalised to any degree of

differencing d>1 as follows.

Let [y*t}: be an stochastic process with the
following Wold representation

d
> 4 — - - =
(1-L) " y ¢ = ul, y*o = ... =y 4 0 (79)

where {ut}: has the same  properties as in (1). Then

expanding (1~L)'_d around L=0 we get

t
y, = I ©6(t-j) u, (80)
W . s J

with 0(t-j)=r(t-j+d)/r(d)(t-jd!, where re.) is the gamma
function such that [I(d)=(d-1)!. Then it is possible to substitute

for the original y*t with the concentrated series

[Tr)

P 0([Tr]) - 3) uj
_ITe] _ j=d
3 () =55 4172 (81)

Under Assumption 1, we have that as Tfw
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YE(E) > © B(D) 18 - g B (s) (82)

_ W
T r(d)
. th .
where Bd(r) is a scalar d - order Wiener process (see
Billingsley (1968) and Gourieroux, Maurel and Monfort (1988)).

Integrating by parts, it is easy to derive the following particular

cases
d=1- Bd(r) = B(r)
d=2->B(r) =J B(r) d
9.3 2.0 By = Iy B(r) dr
etc.
Similarly, the limiting distributions in (8) - (10), will generalise

as follows

-2d 2 2 1 _2
*¢ _
T Iy L > @ Io Bd(r) dr (83)
18y u > ol I B (r)dB(D) (84)
t-1 t 0 d
T-(d+3/2) It y*t > W Ié r Bd(r) dr (85)

Finally, it should be remarked that several simulation
exercises have shown that the discriminatory power of test statistics
for the presence of unit roots is 1low against the alternative
hypothesis of roots which are close to unity. This is explained
because although we have shown that there is a discontinuity between
the distribution theory applicable to stationary and integrated cases,
that discontinuity only holds in the limit, and for finite samples the
distributions are nwch more similar. Phillips (1987b, 1988), has
developed an asymptotic theory for near integrated variables, which
helps to bring together the apparently divergent theories mentioned
above. The following example, related to testing for a unit root,

tries to clarifly the issue.
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Example 13 (Near-Integrated Variables)
Let {yt}: be generated by the following DGP

y +u (86)

pCF g TN

where p = exp (c¢/T), where ¢ is a fixed number and ug satisfies
assumption 1. Note that when c¢=0, Yo is an I(1l) process and when
c#£0, (6) represents a local alternative to Ho: c = 0.

To derive the limiting distribution of the test statistic
for H, it 1is convenient to define the following functional, also

0
known as Ornstein-Uhlenbeck or diffussion process

K (r) = B(r) + ¢ 1; exp (c(r-s)) B(s) (87)

where B(r) is a unit variance scalar Brownian motion, and Kc(r) is a

Gaussian process, so that for fixed r, Kc(r) = N(O,(f exp(c(r—s))z).

Using similar arguments as in Section 1, it is possible to

prove that as T*w,

% pl
y T(t‘) > W Kc(r) (88)
and
-2 2 2. .1 2
* el
T Ly L > @ IO Kc(r) (89)
-1 2 2
* = 3
T Iy -1 ut >w /2 [Kc(l) 1] + A (90)

Since p = 1 + ¢/T +o(l), it is easy to prove that the OLS
estimator of 3 in (86) is such that

T(;-—l) -> c+(1/2(Kc(1)2—1) + k/mz)(.l' Kc(r)z)-l (91)
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When the non-centrality parameter c¢=0, Kc(r) = B(r),

and we recover the main distributional result of the Dickey-Fuller

test statistic. From (91), it can be observed that the effect of

near-integration entails a shift in the location as well as in the
shape of the limiting distribution, though the convergence rate is
identical, i.e 0('1‘-1).
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