
Are Forward Designed or Reverse-Engineered UML diagrams more helpful for
code maintenance?: A family of experiments

amos d
Ana M. Fernández-Sáez a,⇑, Marcela Genero a, Michel R.V. Chaudron b, Danilo Caivano c, Isabel R
a ALARCOS Research Group, Instituto de Tecnologías y Sistemas de Información, University of Castilla-La Mancha, Spain
b Joint Computer Science and Engineering Department, Chalmers University of Technology and University of Gothenburg, Sweden
c
⇑ Corresponding author. Tel.: +34 926295300x3740.
E-mail addresses: ana.fernandez@alarcosqualitycenter.com (A.M. Fernández-Sáez),

Marcela.Genero@uclm.es (M. Genero), chaudron@chalmers.se (M.R.V. Chaudron),
caivano@di.uniba.it (D. Caivano), iramos@us.es (I. Ramos).
Department of Informatics, University of Bari, Italy
d Departamento de Lenguajes y Sistemas Informáticos, University of Seville, Spain

Keywords: a b s t r a c t
Software maintenance
 UML diagrams
 Reverse Engineering
 Maintainability Family
of experiments
 Controlled experiment
Context: Although various success stories of model-based approaches are reported in literature, there is
still a significant resistance to model-based development in many software organizations because the
UML is perceived to be expensive and not necessarily cost-effective. It is also important to gather empir-
ical evidence in which context and under which conditions the UML makes or does not make a practical
difference.
Objective: Our objective is to provide empirical evidence as to which UML diagrams are more helpful dur-
ing software maintenance: Forward Designed (FD) UML diagrams or Reverse Engineered (RE) UML dia-
grams.
Method: We carried out a family of experiments which consisted of one experiment and two replications
with a total of 169 Computer Science undergraduate students.
Results: The individual data analysis and the meta-analysis conducted on the whole family, show a ten-
dency in favor of FD diagrams and are significantly different as regards the effectiveness and efficiency of
the subjects who participated and played the role of maintainers. The analysis of the qualitative data, col-
lected using a post-experiment survey, reveals that the subjects did not consider RE diagrams helpful.
Conclusions: Our findings show that there are some objective results (descriptive statistics or statistical
tests) related to the maintenance effectiveness and efficiency in favor of the use of FD UML diagrams dur-
ing software maintenance. Subjective opinions also lead us to recommend the use of UML diagrams
(especially class diagrams) created during the design phase for software maintenance because they
improve the understanding of the system in comparison with RE diagrams. Nevertheless, we can only
assume that these results are valid in the context of Computer Science undergraduate students when
working with small systems related to well-known domains, and other contexts should be explored in
order to reaffirm the results in an industrial context by carrying out replications with professionals.
1. Introduction

The benefits of using software documentation to comprehend
and modify source code have been widely studied [1–3]. The
authors of [4] report that having documentation available during
system maintenance reduces the time needed to understand how
to perform maintenance tasks by approximately 20%.

UML [5] has become the de facto standard modeling notation
used to complement software documentation as a graphical
notation. It first appeared in 1997 and has now become one of
the most widely-used modeling languages in industry. There is
empirical evidence of its benefits during software development
because it increases the understanding between customer and
developer and improves communication among team members
[6]. UML also improves the source code quality by reducing its
defect density [7].

There is also some evidence of the UML’s benefits during soft-
ware maintenance. The availability of UML documentation may
result in significant improvements to the functional correctness
of changes in addition to their design quality. However, it does
not appear that any time is saved as a result. For simpler tasks,
the time needed to update the UML documentation may be sub-
stantial in comparison with the potential benefits, thus motivating

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2014.05.014&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2014.05.014
mailto:ana.fernandez@alarcosqualitycenter.com
mailto:Marcela.Genero@uclm.es
mailto:chaudron@chalmers.se
mailto:caivano@di.uniba.it
mailto:iramos@us.es
http://dx.doi.org/10.1016/j.infsof.2014.05.014
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

the need for UML tools with better support for software mainte-
nance [8,9].

Despite these benefits, there are some common modeling prob-
lems that lead to models being less effective and less adopted [10].
For example, some of the limitations of program understating and
maintenance supported by UML are the following:

� Unclear specifications of syntax and semantics in some of the
UML’s more advanced features [3], leading to the need for ade-
quate training in UML [11].
� Spatial layout problems, e.g., large diagrams are not easy to read

[3].
� The UML’s insufficient support as regards representing the

domain knowledge required to understand a program [3].
� The time spent updating the UML diagrams according to the

changes in source code counteracts the improvement in source
code maintenance time [8,9].
� UML models produced in the requirements analysis process

influence neither the comprehensibility of source code nor its
modifiability [12].

Despite its limitations, there are clear benefits of using UML,
such as the improvement in the traceability from functional
requirements to code [11], and the fact that UML is always benefi-
cial in terms of functional correctness (reducing defect density)
[13].

Moreover, diagrams with a high level of detail are reported to
be more helpful during software development [14], while those
with a low level of detail seems to be better when performing
maintenance tasks [15].

As we can see, there is some evidence to support the use of UML
modeling during software maintenance, but the results are not
conclusive owing to the diversity of the results obtained in differ-
ent empirical studies. It is not clear whether an investment in cre-
ating and updating UML diagrams has a return during later phases,
like software maintenance which consumes a high percentage of a
project’s resources. If the presence of UML diagrams is a clear posi-
tive factor, but it is not clear what the best way to create them is,
then why not create them directly from source code and save the
time needed for their creation and update? This is related to a pos-
sible influential factor in the software maintenance which has not
being studied before: the Origin of the diagrams. FD diagrams, i.e.,
the diagrams generated during forward development, are some-
times available for maintainers in the maintenance phase, but
when this is not the case, the diagrams may be reconstructed
through an RE technique [16]. The difference in the origin of the
diagrams (i.e., FD diagrams or RE diagrams) and the different tech-
niques that can be used to generate an RE diagram result in differ-
ent styles of diagrams that may influence the quality of the source
code being maintained.

RE diagrams are easier to obtain than FD diagrams because they
can be automatically generated with a reversing tool without high
investments in developer effort (although these kinds of diagrams
need some polishing). Given the ease of their generation and that
they can be generated automatically at any time, maintainers can
have up-to-date diagrams that model the system when they need
them. However, the problem with these diagrams is their very high
level of detail, which may lead to difficulties in understanding
them. There are several issues related to the obtaining of diagrams
with a high level of detail when they originate from source code,
after applying a Reverse Engineering technique:

� The level of abstraction is very low, owing to the fact that every
element in the source code is represented in the UML diagrams.
The benefit of this is that there is a very high traceability from
the diagrams to the source code.
� The business rules allow the designers to create UML diagrams
by following a specific design objective. The developers then
implement the source code by following these diagrams. RE dia-
grams do not represent these rules, since that they are obtained
from source code and these diagrams only reflect how the code
was implemented, rather than why.
� These RE diagrams, unlike FD diagrams, are platform-dependent

and therefore contain details about the implementation patterns
and frameworks used, which do not appear in FD diagrams.
� After obtaining the RE diagrams, a cleaning and lay-outing

process needs to be performed in order to adapt them to their
corresponding audience.

However, there is another option when up-to-date diagrams are
required: the maintainer may keep the source code and the dia-
grams in-synch manually by applying the corresponding changes
incurred by maintenance to both. This option requires more man-
ual effort than the RE process, because the process is not as auto-
mated as the RE approach is. Nevertheless, when the diagrams
are generated by people and not by automated tools, they may
contain different levels of abstraction and detail, depending on
the importance of diagram elements [17]; this may make diagrams
more understandable, and hence more effective.

All of the above lead us to pose our main research question:
‘‘Should software maintenance companies spend time updating
their UML diagrams or should they use Reverse Engineered dia-
grams instead?’’ Our results might be useful for companies that
are performing software maintenance and yet are unsure whether
they should continue updating their UML diagrams (as part of the
project documentation) or whether they might save that time by
automatically generating RE diagrams.

On the one hand, if we obtain better results with design UML
diagrams we will have empirical evidence to encourage companies
and software developers to follow a model-centric approach. This
implies beginning the development of a software system by
building the corresponding UML diagrams and keeping them up-
to-date, thereby facilitating maintenance tasks. On the other hand,
if we obtain better results with RE diagrams, we will have empiri-
cal evidence to suggest that maintainers should obtain the UML
diagrams needed by using RE techniques. This will thus avoid the
need to maintain the available diagrams (whenever these are avail-
able) and will reduce the time involved in maintenance tasks.

There is a need for experiments focused on software mainte-
nance and evolution by a non-original developer, as this consumes
the majority of the resources in a typical software organization.

All of the above led us to perform a family of experiments to
investigate whether the different Origins of UML diagrams (Reverse
Engineered or Forward Design diagrams) affect the maintainer’s
performance when modifying source code. Our aim is to discover
whether or not, in order to obtain an up-to-date version of dia-
grams, an effort should be made to maintain diagrams. The family
consists of a controlled experiment, which was previously pre-
sented in [18], and two replications, carried out with students from
two countries (Spain, and Italy). The participants were 169 Com-
puter Science undergraduate students with different abilities and
levels of experience with the UML and with JAVA source code.

The three main goals of this paper are therefore to present a
thorough description of this family of experiments, its main find-
ings and their practical implications.

This paper is organized as follows. Section 2 presents the
related work. Section 3 provides a description of the experiment
and replications. The results obtained in the experiment are set
out in Section 4, whilst the implications of the study are summa-
rized in Section 5 and the threats to validity are summarized in
Section 6. Finally, Section 7 outlines our main conclusions and
future work.

2. Related work

The related work will be focused on the empirical evidence on
the use of UML diagrams in software maintenance. A Systematic
Literature Review that was carried out to collect all the empirical
studies performed as regards the use of UML in maintenance and
the understandability of UML diagrams which may influence the
maintenance of the system is presented in [19]. In this SLR, 46
primary studies were found reporting 74 empirical studies related
to this topic, but only the following works directly related to the
use of UML diagrams in source code maintenance:

– In [9] an experiment was performed to investigate whether
the use of UML influences maintenance in comparison to
the use of only source code. This experiment investigates
the costs of maintaining and the benefits of using UML docu-
mentation during the maintenance and evolution of a real
nontrivial system, using 20 professional developers as sub-
jects. These maintainers had to perform 5 maintenance tasks
consisting of adding new functionalities to the existing sys-
tem after which the correctness, time and quality of the solu-
tion were measured. Both source code and UML diagrams,
when available, had to be maintained. The results of this
work show a positive influence of the presence of UML for
maintainers. In terms of time, the UML subjects took more
time if the UML documentation had to be updated but that
difference was not statistically significant. However, UML
was always beneficial in terms of functional correctness
(introducing fewer faults into the software) because the sub-
jects in the UML group had, on average, a practically and sta-
tistically significant 54% increase in the functional correctness
of changes. UML also helped produce code of a better quality
when the developers were not yet familiar with the system.
This experiment is a replication of a previous work performed
with students which is presented in [8] and which obtained
similar results. The main difference between [9] and the work
presented here is that [9] shows how source code is main-
tained when UML diagrams are complementing the source
code or when the source code is alone, while the subjects
of the family of experiments presented herein always
received UML diagrams (some received FD diagrams while
others received RE diagrams). Another difference is that the
UML diagrams used in our family of experiments did not
need to be updated according to source code changes. In
addition, the subjects of [9] were professionals.

– Arisholm et al. [8] presented the results of two controlled
experiments carried out to assess the impact of UML design
diagrams on software maintenance. 98 undergraduate stu-
dents were involved. The authors analyzed the time taken
to perform the modifications to the system, the time spent
on maintaining the models, and the quality of the modifica-
tions performed. The results of the quantitative analysis
revealed no significant difference in the time spent making
the modifications. Similarly to [9], they observed that the
quality of the modifications was higher for those participants
who were furnished with UML diagrams. As in [9], the partic-
ipants’ ability and experience were not analyzed with regard
to the comprehensibility and modifiability of source code.
Unlike our study, the authors analyzed the effect of UML
based documentation (a use case diagram, sequence diagrams
for each use case, and a class diagram) on modification tasks
performed on both UML diagrams and source code. The dif-
ferences with the work presented in [8] and our work are
similar to those mentioned in the case of [9], except for the
type of subjects involved.
It is important to mention some other important papers relating
to the influence of the use of UML diagrams during software main-
tenance which were not found as part of [19] because of their dates
of publication or because of the objective of the SLR:

– Scanniello et al. [12] used a family of controlled experiments to
discover that the use of analysis UML diagrams (those obtained
in an early phase or the development process, such as the
requirements elicitation or analysis phase) does not signifi-
cantly improve the comprehension and modifiability of source
code with regard to the use of source code alone. These results
are valid in the context of undergraduate students and small
size systems related to well-known domains. The study pre-
sented herein is, however, focused on FD and RE diagrams,
which have a higher level of detail. Moreover, the dependent
variables are different because the work of Scanniello et al.
focused on the comprehension and maintainability of the
source code, while the work presented here is focused solely
on the maintainability of source code, and bigger systems are
also considered.

– In [20] the results of an experiment to assess whether the com-
prehension of source code is affected when it is added to UML
class and sequence diagrams produced in the design phase is
presented. The results reveal that the participants benefited
from the use of the UML diagrams. An average improvement
of 14% was achieved when the participants accomplished the
comprehension task with the class and sequence diagrams,
but the time needed to comprehend the code was not signifi-
cantly influenced from a statistical point of view. Our work dif-
fers from that presented in [20] because we compare FD
diagrams with RE diagrams rather than with no UML diagrams,
and the dependent variable is also different because [20]
focuses on the comprehension of the source code and the work
presented here is focused on the maintainability of source code.
Bigger systems are also used here.

– In the work presented in [21], the experiment performed is
focused on the comprehension and the difficulties involved
in maintaining object-oriented systems. During this experi-
ment the subjects, who were 34 students in their third year
of a Computer Science degree, had to perform 3 different
maintenance tasks on a medium-size object-oriented system
written in Java. The tasks were related to extending, updating
and deleting functionalities of the system, i.e., maintaining the
system. It is important to note that the subjects had to give
higher priority to the quality of the solutions than to a shorter
development time, which may have influenced the results of
the experiment. UML diagrams were also presented to the sub-
jects of the experiment, and the correctness of their solutions
was measured, but this work was only focused on exploring
the participants’ strategies and problems while they were con-
ducting maintenance tasks on an object-oriented application.
Two major groups of difficulties were related to the compre-
hension of the application structure, namely the understand-
ing of GUI implementation and OO comprehension and
programming. The main difference between the work pre-
sented in [21] and the work here is that the subjects’ perfor-
mance was not measured in the former while it is measured
in the latter. In [21] the results are qualitative (description of
problems while maintaining source code), while here they
are quantitative (results on performance, such as time spent
and correctness of the answer).

– The authors of [22] show the results of an explorative survey
used to investigate the state of the practice regarding the use
of UML in software development and maintenance. The
majority of the companies interviewed use UML for software

development and to perform maintenance operations. Mainte-
nance operations are mainly performed by practitioners with
little experience. Another interesting point concerns the aver-
age effort needed to perform maintenance operations, which
ranges from 1 to 5 person hours for an ordinary maintenance
operation (e.g., corrective changes), and from 10 to 50 person
hours in the case of an extraordinary maintenance operation
(e.g., perfective or adaptive changes). The differences between
the work presented in [22] and ours are based on the nature
of the empirical study (an explorative survey vs. an explicative
family of experiments).

– An experiment presented in [15] studies whether different
Levels of Detail (LoD) in UML diagrams might influence the
maintenance of source code. In [14,15]there is an assumption
that the higher the amount of information put into a diagram,
the more is known about the concepts/knowledge described in
it. That being the case, a higher LoD would improve maintain-
ers’ performances owing to the fact that they would under-
stand the system they have to maintain better. The results
from [15] are not conclusive, but show a slight tendency in
favor of high LoD diagrams. The similarities of the work pre-
sented in this paper with [15] arise from the fact that FD dia-
grams could be considered as having a high LoD, while RE
diagrams could be considered as having a very high LoD. The
difference between [15] and the work presented here are the
independent variables used (LoD of UML diagrams in the for-
mer, and the origin of UML diagrams in the latter), and the
design of the experiment (within-subjects and between-
subjects respectively).

Having assumed that the presence of UML diagrams is a positive
factor for software maintenance, it is important to know what
kinds of UML diagrams are better at improving these kinds of tasks.
It is therefore important to additionally study the comprehension
of UML diagram in themselves. It is possible to find many papers
related to the comprehension of UML diagrams (which is directly
related to the comprehension of the software system) in literature
[23], [24]. We can highlight two papers found as part of [18], which
focus solely on software development using different kinds of UML
diagrams during this phase but which might also be related to
maintenance:

– The study presented in [14] consists of an empirical experiment
focused on determining how different Levels of Detail (LoD)
influence the understandability of UML diagrams. It measures
the correctness and efficiency in comprehending UML diagrams
of 53 Computer Science Master’s students. The results show a
better understanding of diagrams when they have a high LoD.
There are some differences between the work presented in
[14] and the family of experiments summarized in this paper.
On the one hand, the experiment presented in [14] focuses
solely on the comprehension of UML diagrams, and the subjects
were not given the source code of the system. The experiment
presented in [14] is similar to that presented in [15], but focuses
on the development of software rather than the maintenance of
software and with the difference that [14] is focused on the
comprehension of the UML diagrams and [15] on the mainte-
nance of source code.

– In [3] an experiment with 15 subjects (PhD students or Profes-
sors) to assess the qualitative efficacy of UML diagrams in aiding
program understanding is described. The experiment had
participants analyze a series of UML diagrams and answer a
detailed questionnaire concerning a hypothetical software sys-
tem. Results from the experiment suggest that the relation
between the correctness of the solution and the time spent
obtaining it using UML to support program understanding is
limited by factors such as ill-defined syntax and semantics, spa-
tial layout, and domain knowledge.

All related work that is relevant to this paper is summarized in
Table 1 to provide the reader with a better extract of the main
information in order to compare the empirical studies. The col-
umns of the table are described as follows:

� Ref: contains the reference to the paper that presents the empir-
ical study considered.
� Type of empirical study: indicates the type of empirical study

summarized in the paper (a survey, an experiment, a family of
experiments, etc.)
� Goal: describes the goal pursued by the empirical study.
� Subjects: presents the numbers of subjects who participated in

the empirical studies and the type of subjects (students, profes-
sionals, academic staff, etc.).
� Independent variables: describes the variables that are studied

to ascertain their effect on the dependent variables. The
values (treatments) of the independent variables are also
presented.
� Dependent variables: presents the outcome variables, which are

the variables that are affected by the changes produced in the
independent variables.
� Experiment design: contains the type of design selected, which

can be between-subjects (each subject receives only one treat-
ment) or within subjects (each subject receives all the
treatments).
� Tasks: describes the tasks to be performed by the subjects as

part of the empirical study.
� Results: reveals the main findings obtained.

It is clear that the LoD of UML diagrams is an important
factor which has previously been studied in literature because
the LoD of UML diagrams influences their understanding (and
hence also source code understanding), and adding details to a
diagram is a time consuming task. On the one hand, low LoD
diagrams, like analysis models, do not appear to be helpful for
source code maintenance [12]. On the other hand, high LoD dia-
grams are better understood than low LoD diagrams when per-
forming software development [14]. It is therefore clear that a
balanced LoD will be the best option, but there is a tendency
to use diagrams with a detailed designed, especially when FD
are used [20]. But how many details should be presented in a
UML diagram? If a high LoD diagram is the best option, why
not use an RE diagram, which can be automatically generated
(saving time) in comparison to creating UML diagrams during
software development and keeping them up-to-date? These
questions motivated us to plan a family of experiments that
compare the usefulness of FD and RE diagrams when performing
source code maintenance.
3. Description of experiment

Families of experiments allow researchers to answer questions
that are beyond the scope of individual experiments and permit
the generalization of findings across studies, thus providing evi-
dence with which to for confirm or reject specific hypotheses
[25]. Replications of empirical studies might be regarded as an
essential activity in the construction of knowledge in any empirical
science based on the following propositions: ‘‘We do not take even
our own observations quite seriously, or accept them as scientific
observations, until we have repeated and tested them’’ [26] and

Table 1
Summary of the related work.

Refs. Type of
empirical
study

Goal Subjects Independent
variables

Dependent
variables

Experiment
design

Tasks Results

[9] 1 Experiment Investigates
whether the use
of UML influences
maintenance in
comparison to the
use of only source
code

20 Professional
developers

The use of UML
documentation in a
UML-supported
IDE (possible
values: presence or
absence of UML
diagrams
accompanying
source code)

Time spent
modifying source
code.
Time spent
modifying source
code + UML
diagrams.
Functional
correctness and
quality of the
solution.

Between-subjects Modify source code
and UML diagrams

The subjects who
received UML
diagrams needed
more time if the UML
documentation was
to be updated.
UML was always
beneficial in terms of
functional
correctness.
UML also helped
produce code of a
better quality when
the developers were
not yet familiar with
the system.

[8] 2 Experiments Investigates
whether the use
of UML influences
maintenance in
comparison to the
use of only source
code

Undergraduate
students (22 and
76, respectively)

The use of UML
documentation in
a UML-supported
IDE(possible
values: presence
or absence of
UML diagrams
accompanying
source code)

Time needed to
change source
code.
Time needed to
change source
code + UML
diagrams.
Correctness of the
change.
Quality of the
change.

Between-subjects Modify source code
and UML diagrams

The subjects who
received UML
diagrams needed
more time if the UML
documentation was
to be updated.
UML was always
beneficial in terms of
functional
correctness.
UML also helped
produce code of a
better quality when
the developers were
not yet familiar with
the system.

[12] Family of
experiments
(1 + 3)

Investigates
whether the use
of UML models
produced in the
requirements
analysis process
helps in the
comprehensibility
and modifiability
of source code

Undergraduate
students (24, 22,
22 and 18)

The use of UML
analysis
models(possible
values: presence or
absence of UML
diagrams
accompanying
source code)

Comprehension of
level of the source
code.
Capability of a
maintainer to
modify source
code.

Within-subjects Comprehension and
modification tasks.
Post-experiment
questions

UML models
produced in the
requirements
analysis process
influence neither the
comprehensibility of
source code nor its
modifiability

[20] 1 Experiment Investigates
whether the
comprehension of
source code
increases when
participants are
provided with
UML class and
sequence
diagrams
produced in the
software design
phase

16 Undergraduate
students

The use of
sequence and class
diagrams created
in the design
phase(possible
values: presence or
absence of UML
diagrams
accompanying
source code)

Comprehension of
source code

Within-subjects Comprehension
questions

Participants
comprehend source
code significantly
better when it is
added to class and
sequence diagrams
together

[21] 1 Experiment Investigates the
comprehension
and the
difficulties
involved in
maintaining
object-oriented
systems

34 Undergraduate
students

– Comprehension
and modification
of systems

Between-subjects Modification questions Detection of common
difficulties in
understanding when
maintaining software
systems

[22] 1 Survey Investigates the
state of the
practice regarding
the use of UML in
software
development and
maintenance in

– – – – – The majority of the
companies
interviewed use UML
for software
development and to
perform
maintenance

Table 1 (continued)

Refs. Type of
empirical
study

Goal Subjects Independent
variables

Dependent
variables

Experiment
design

Tasks Results

Italian industry operations.
Maintenance
operations are
mainly performed by
practitioners with
little experience.

[15] 1 Experiment Determines the
influence of
different levels of
detail (LoD) of
UML diagrams in
source code
maintenance

11 Undergraduate
students

The level of detail
of UML diagrams
(possible values:
high or low LoD)

Understandability
and modifiability
of source code

Between-subjects Comprehension
tasks + modification
tasks + subjective
questions

No significant results
in favor of high or
low LoD. There is a
slight tendency in
favor of low LoD
diagrams

[14] 1 Experiment Determines the
influence of
different levels of
detail (LoD) on
the
understandability
of UML diagrams

54 Master’s
students

The level of detail
of UML diagrams
(possible values:
high or low LoD)

Comprehension of
UML diagrams

Between-subjects Comprehension
tasks

Results show that the
effect of LoD in UML
models on model
comprehension is
significant in favor of
high LoD

[3] 1 Experiment Assesses the
qualitative
efficacy of UML
diagrams in
aiding program
understanding

15 Subjects (PhD
students or
Professors)

– Comprehension of
UML diagrams

Between-subjects Comprehension
questions +
modification
questions

UML’s efficacy in
support of program
understanding is
limited by factors
such as ill-defined
syntax and
semantics, spatial
layout, and domain
knowledge

A.M. Fernández-Sáez et al. / Information and Software Technology 57 (2015) 644–663 649
‘‘. . . replication is needed not merely to validate one’s findings, but
more importantly, to establish the increasing range of radically dif-
ferent conditions under which the findings hold, and the predict-
able exceptions’’.

In order to run and report this family of experiments, we
followed the recommendations provided in several pieces of
work [27–29]. The family of experiments followed the guidelines
for reporting empirical research in software engineering [28]
as closely as possible. The experimental material is available
for downloading at: http://alarcos.esi.uclm.es/originUMLmainte-
nance/.

In the following subsections we shall describe the main charac-
teristics of the experiment and the replications, including goal,
context, variables, subjects, design, hypotheses, material, tasks,
experiment procedure and analysis procedure. Fig. 1 presents the
chronology of the family of experiments, summarizing the name
of the experiment, the number of participants, and the name of
the Universities at which the experiment and replications were
run.
E- US1

40 2nd year Master’s students,
University of Seville, Spain.

R2- UB

78 1st year Master’s students,
University of Bari, Italy.

R – US2

51 2nd year Master’s students,
University of Seville, Spain.

November 2011 May 2012

Fig. 1. Chronology of the family of experiments.
3.1. Goal

The principal goal of this family of experiments was to investi-
gate whether the Origin of UML diagrams influences the mainte-
nance of source code. The GQM template for goal definition
[25,30]was used to define the goal of our experiment as follows:
‘‘Analyze the maintainability of source code from the point of view
of software maintainers with regard to the Origin of the UML dia-
grams, in the context of Computer Science students at the Universi-
ties of Seville and Bari’’.

We considered two possible Origins of the diagrams: the design
phase and an RE technique. In the first case, our intention was to
maintain the source code using the UML diagrams built during
the design phase. In the second case, we set out to maintain a
source code for which the UML diagrams were not available, which
meant that they would have to be obtained from the source code
using an RE technique.

We decided to consider class diagrams and sequence diagrams
because they can be obtained from an RE technique and because
they are also two of the most commonly used diagrams when
designing a system [23,31,32].
3.2. Context selection

The experimental objects consisted of class and sequence dia-
grams and the Java code of one system. The diagrams were
obtained from different Origins:

� RE: Reverse Engineered UML diagrams, which are constructed
completely automatically based on the source code.
� FD: Forward Designed UML diagrams obtained at the design

phase. These are totally manually designed.

http://alarcos.esi.uclm.es/originUMLmaintenance/
http://alarcos.esi.uclm.es/originUMLmaintenance/

Table 2
Metrics of the software system used in the family of experiments.

Class
diagrams

#
Classes

Sequence
diagrams

#
Messages

LoC

D 4 16 21 226 5123
RE 4 21 11 191
RE diagrams are diagrams with a high LoD since they represent
all the elements in the source code. The FD diagrams might also be
considered as diagrams with a high LoD because their class dia-
grams contain class names, attributes, operations and relation-
ships, and their sequence diagrams contain lifelines, messages
and parameters of messages. However, FD diagrams do not repre-
sent all the elements in the source code, but those elements which
are represented (based on human selection) are completely repre-
sented. FD diagrams can therefore be considered as high LoD dia-
grams while RE are higher LoD diagrams.

The diagrams described a sports center system from which
users can rent services (tennis courts, etc.). The system is a sports
center application which was created as part of the Master’s
degree Thesis of a student from the University of Castilla-La Man-
cha, and we therefore consider it to be a realistic system. It is a
desktop application created with the client–server paradigm.
The system contains 5123 Lines of Code (LoC) (Table 2), so it
might be considered a small realistic system. In fact its size is
almost double the LoC of other systems used in previous works
which have nevertheless been considered as realistic systems,
for example in [9]. The maintenance requirements were formu-
lated by the Master’s supervisor. In the case of the FD diagrams,
4 class diagrams are available, with a total of 16 classes, and 21
sequence diagrams, with 226 messages. In the case of RE dia-
grams, 4 class diagrams are available, with 21 classes, and 11
sequence diagrams, with 191 messages. The number of classes
in class diagrams is a good deal smaller than in the class dia-
grams of systems used in other previous work. This is owing to
the use of different levels of abstraction for modeling, but their
diagram size is still representative of realistic systems [33]. Note
that the number of sequence diagrams in the RE group is 11 and
the number of diagrams in D group is 21. The number of mes-
sages per diagram (226 messages for 21 diagrams in D group,
and 191 messages for 11 diagrams in RE group) therefore pro-
vides us with an indicator which suggests that RE diagrams
should be considered as being larger and more complex. The RE
diagrams were generated using the IBM Rational Software Archi-
tect tool, employing the default RE-functionality that it provides,
followed by auto-lay-outing (also offered by the same tool). These
experimental objects were presented in Spanish in E-US1 and
R-US2. A native Italian speaker translated all the material into
Italian in the case of R-UB. The replicators supported the native
speakers and helped them when needed (e.g., in the translation
of technical terms).

The participants, who were grouped by experiment, had the fol-
lowing characteristics:

� E-US1: The participants were 40 Computer Science students
from the University of Seville (Spain) who were taking the Soft-
ware Engineering III course in the second-year of their Master’s
Degree, from which they had acquired training in UML dia-
grams (as they also had from previous Software Engineering
courses). 90% of the students were non-repeating course stu-
dents and most of them did not have industrial experience (five
subjects had experience as programmers, another as an analyst
and another as a maintainer). The subjects considered their
knowledge of the UML to be high/very high in most cases for
class diagrams, and medium/high for sequence diagrams (the
two kinds of diagrams which were used during the experiment).
Most of the subjects’ knowledge of JAVA language is excellent
(all the subjects considered it to be above average). In Spain,
grades are expressed as doubles and assume values of between
5 and 10. The lowest grade is 5, while the highest is 10.
� R-US2: The participants were 51 students from the University of

Seville (Spain) who were taking the same course as the students
in the original experiment, i.e., they were taking the Software
Engineering III course in the second-year of their Master’s
Degree, from which they had acquired training in UML dia-
grams (as they also had from previous Software Engineering
courses).In this case, more than half (58%) the students were
repeating the course and most of them had industrial experi-
ence, mainly as programmers, but also as analysts, designers
or maintainers (40% of the subjects did not have any experience
at all). The subjects considered their knowledge of the UML to
be high/very high in most cases for class diagrams and for
sequence diagrams, and most of them had an excellent
knowledge of JAVA language (all the subjects considered this
to be above average). The grading system is analogous to that
explained for E-US1.
� R-UB: The participants were 78 Computer Science students who

were taking the Software Engineering course in the second-year
of their Laurea Degree at the University of Bari. In Italy, the
exam grades are expressed as integers and assume values of
between 18 and 30. The lowest grade is 18, while the highest
is 30. We cannot provide details about their background
because the first session of the experiment needed to be can-
celed for reasons beyond our control.

The students who participated in the experiment and the repli-
cations were volunteers selected for convenience (the students
available in the corresponding course).
3.3. Variable selection

The independent variable (also called the ‘‘main factor’’) is the
Origin of diagrams, which is a nominal variable with two values
(treatments):

� Forward Designed (FD).
� Reverse Engineered (RE).

The dependent variable is the maintainability. This dependent
variable was measured using the following measures:

� Maintainability Effectiveness (MEffec): This measure is related to
the correctness of the response, and it therefore reflects the
ability to maintain the system presented correctly. A higher
value of this measure reflects better Maintainability Effective-
ness. It is calculated with the following formula:
correct tasks�# performed tasks
tasks

� Maintainability Efficiency (MEffic): This measure is related to the
timing of the response, but also reflects the ability to maintain
the system presented correctly. Its unit of measure is ‘‘the num-
ber of correctly-performed modification tasks per time unit’’.
The unit of time used was seconds. A higher value of this mea-
sure reflects better maintainability efficiency. It is calculated
with the following formula:

correct tasks�# performed tasks
time spent

We also considered a further independent variable (from here
on termed as the ‘‘cofactor’’): Ability. We considered this cofactor
in our efforts to investigate whether subjects’ abilities play any role
in the maintenance of source code, i.e., we discriminate between
users according to their respective level of Ability, with the purpose
of testing the hypothesis that this is a relevant influencing factor
that should be taken into account when adopting these kinds of
diagrams. A quantitative assessment of the participants’ Ability
was obtained by computing the final grade of the course they were
taking. Those students from E-US1 and R-US2 with a final grade of
below 5.7/10 (which represents the median of the group) were
classified as low Ability participants, while those with a higher
grade were given the classification of high Ability students. The
instructor of the course (the last author of the paper), who was
not one of the experimenters, was asked to provide the grades. In
the case of R-UB, the cutoff point was 2.5/5.
3.4. Hypotheses formulation

The following hypotheses have been formulated and tested:

� H1,0: there is no significant difference in the subjects’ mainte-
nance effectiveness when working with UML diagrams which
have originated from the design phase or with diagrams which
have originated from a Reverse Engineering technique. H1,1:
H1,0.
� H2,0: there is no significant difference in the subjects’ mainte-

nance efficiency when working with UML diagrams which have
originated from the design phase or with those which have orig-
inated from a Reverse Engineering technique. H2,1: H2,0.

The goal of the statistical analysis is to reject the null hypothe-
ses and possibly to accept the alternative ones. Both of the hypoth-
eses are two-sided, because we did not postulate any effect arising
from the origin of the diagrams.
3.5. Experimental design

When designing the experiment we attempted to alleviate sev-
eral issues that might threaten the validity of the research done by
considering the suggestions provided in [29].
Table 3
Experimental design.

Origin of UML diagrams

RE D

Group 1 Group 2

Table 4
Summary of maintenance tasks.

Task Summary of task descriptions

T1 When one of the sport center’s services is not available (owing to a breakdown
should be cancelled

T2 The sport center’s system should store its customers’ telephone numbers
T3 A ticket showing a customer’s reservations at a specific time should be gener
T4 When we delete one of the sport center’s members, his/her pending payment
T5 The information about the sport center’s instructors should be stored by the s
We selected a between-subjects balanced design in which each
treatment has an equal number of subjects [34]. We decided to use
a between-subjects design rather than a within-subjects design
owing to time constraints. The inherent threats of a between-
subjects design were thus alleviated by taking into account the
suggestions provided in [29]. In an attempt to alleviate experience
effects, we provided the subjects with a background questionnaire
(which can be downloaded with the rest of the experiment mate-
rial) in the training session which took place before carrying out
the experiment. The background questionnaire consisted of three
blocks of questions. The first one was related to the subjects’ skills
and experience. The second block consisted of a set of question
used to measure the subjects’ knowledge of UML. The last block
was a set of questions about Java. This background questionnaire
improved on the design of this family of experiments in compari-
son with the previous experimentation work presented in the
related work section.

The subjects were then assigned to the 2 groups in a random
manner (see Table 3), based on the marks obtained in the back-
ground questionnaire (blocked design by experience). This was
not possible in the case of the R-UB subjects, who were assigned
to each group in a random manner.

To avoid skewing the results of the tasks as a result of their
being of different levels of difficulty, they were randomized. The
subjects in each group therefore received the same tasks but in a
different order. In order to alleviate learning effects, the order of
the tasks was the same for each treatment, i.e., one subject from
each group received the tasks in the same order, but in a different
order from the rest of his/her group.

3.6. Experimental tasks

The modification questionnaires were formed of two kinds of
maintenance tasks (Table 4); both of these activities involve chang-
ing the source code:

� Adaptive maintenance task: these maintenance activities were
intended to enhance the system by adding features, capabilities,
and functions, in response to new technology, upgrades, new
requirements, or new problems, i.e., a modification of a soft-
ware product performed after delivery to keep a software prod-
uct usable in a changed or changing environment [35]. In our
case, new requirements had to be added to the system, with
the subjects receiving a list of requirements which had to be
used to modify the code of the system and thus add/change cer-
tain functionalities. This part of the experiment consisted of 3
tasks (see example in Fig. 2).
� Corrective maintenance task: these maintenance activities were

‘‘intended to remove errors or bugs from the software, the
procedures, the hardware, the network, the data structures, and
the documentation’’ [36]. In our case, bugs from the source code
had to be detected and fixed. We consequently analyzed the
list of bugs reported by a professional Dutch IT development
Type of
maintenance

Maximum
mark

, for example) all reservations for this service Corrective 4 Points

Adaptive 5 Points
ated by the system Adaptive 5 Points
s sometimes remain in the system Corrective 2 Points
ystem Adaptive 6 Points

Fig. 2. Example of adaptive maintenance task.

Fig. 3. Example of corrective maintenance task.
company (whose name is not shown for reasons of privacy) and
introduced these kinds of defects into our system, giving the
subjects a list of functional defects which had to be detected
and corrected. All this explains why we consider these tasks
to be common, realistic tasks. This part of the experiment
consisted of 2 such tasks (see example in Fig. 3). The subjects
were provided with answer sheets for this kind of questions,
to allow them to structure their responses.

These two kinds of tasks needed to be answered using data col-
lection forms, i.e., templates which had to be filled in with pieces of
code (see example in Fig. 4). We used these data collection forms to
obtain a structured response which facilitated the correction of the
results, and is also an improvement on the design of this family of
experiments in comparison with previous work. The subjects were
provided with answer sheets to allow them to structure their
responses regarding the maintenance tasks. The reason for doing
this was that maintaining source code on paper is not easy owing
to space constraints, and the subjects were therefore required to
write changes to the source code in a structured manner on the
answer sheets (format: line-no, change type, Java code, etc.). They
had to fill in a different form depending on the element that they
wished to maintain (a class, a method, an attribute, etc.). These
answer sheets can be found at: http://alarcos.esi.uclm.es/origi-
nUMLmaintenance/.

The largest change consisted of adding a class which would
need at least 22 lines of code. In general, between 1 and 3 clas-
ses needed to be modified. The complexity of the task might not
appear to be too complex, owing to the number of LoCs that
have to be changed, but the complexity of the task lies in the

http://alarcos.esi.uclm.es/originUMLmaintenance/
http://alarcos.esi.uclm.es/originUMLmaintenance/

Fig. 4. Answer sheet related to the element ‘‘Class’’, filled with an example.

Table 5
Post-experiment survey.

Id Question/issue Possible answers

Ex1 The difficulty of tasks (1–5)
Ex2 The training was sufficient to be able to perform the tasks (1–5)
Ex3 The clarity of the material provided (1–5)
Ex4 The task objectives were perfectly clear to me (1–5)
Ex5 The tasks I performed were perfectly clear to me (1–5)
Ex6 I did not experience difficulty in reading the diagrams (1–5)
Ex7 I did not experience difficulty in reading the source code (1–5)
Ex8 The LoD of the diagrams was correct enough for me to be able to perform the tasks (1–5)
Ex9 The available class diagrams were helpful (1–5)
Ex10 In the event that you do not think that the class diagrams have been useful, indicate why Open question
Ex11 The available sequence diagrams were helpful (1–5)
Ex12 In the event that you do not think that the sequence diagrams have been useful, indicate why Open question
Ex13 I had enough time to perform the tasks Multiple choice question
Ex14 How much time (as a percentage) did you spend looking at the diagrams? Multiple choice question
Ex15 How much time (as a percentage) did you spend looking at the source code? Multiple choice question

1 = Strongly agree; 2 = agree; 3 neutral; 4 = disagree; 5 = strongly disagree (Ex2, Ex3, Ex4, Ex5, Ex6, Ex7, Ex9, Ex11).
1 = Very high; 2 = high; 3 = correct; 4 = low; 5 = very low (Ex8).
1 = Very difficult; 2 = difficult; 3 = medium; 4 = easy; 5 = very easy (Ex1).
1 = Very clear; 2 = clear; 3 = correct; 4 = unclear; 5 = very unclear (Ex3).
A = More time needed; B = less time needed; C = enough time (Ex13).
A. <20%; B. P20% and <40%; C. P40% and <60%; D. P60% and <80%; E. P80% (Ex14, Ex15).
difficulty of detecting where the change is to be made in the
source code, and how it should be carried out. It should also
be borne in mind that 5 tasks had to be completed in 2 h, using
a system that the subjects had never seen. We limited the time
of the experiment to fit in with subjects’ availability. The sub-
jects were only required to maintain the system, i.e., they did
not need to update diagrams according to their changes or to
create test cases.

After performing each maintenance task, the subjects were also
required to indicate which artifacts (source code, class diagrams
and/or sequence diagrams) they had used to solve the task. They
were asked this in order to check whether or not they used the dia-
grams to solve the maintenance tasks (otherwise, the effect mea-
sured would not be the influence of the different origin of the
diagrams). We shall refer to these kinds of questions as ‘‘post-
questions’’.

In addition, at the end of the experiment’s execution the sub-
jects were asked to fill in a post-experiment survey (see Table 5),
whose goal was to obtain feedback about their perception of the
experiment execution - feedback which could be used to explain
the results obtained. The answers to the questions were based on
a five-point Likert scale [37]. During the experiment’s execution,
the subjects had to perform 5 maintenance tasks, in different
orders, which are summarized in Table 4.

3.7. Experimental procedure

The experimental material and the time duration were
checked by carrying out a pilot study with 6 PhD students from
the University of Castilla-La Mancha, Spain, before the execution
of the first experiment. The pilot study was similar to the
experiment described in this section, but with no time limit.
The results of the pilot study were used as a basis to adapt the
number of tasks and their complexity to the experimental time
constraints. Some spelling mistakes were also corrected and some
requirement statements were rewritten in order to make them
more understandable.

We performed internal replications of the original experiment,
and the entire family of experiments was carried out by the same
experimenters. We conducted the experiment and the replications
in a classroom under controlled conditions.

We did not provide details on the experimental hypotheses, and
informed the participants that their grade on the course would not
be affected by their performance.

The experiment and replications took place in two sessions of
two hours each:

� Training session: The subjects first attended a training session
in which detailed instructions on the experiment were pre-
sented and the main concepts of UML and JAVA were revised.
In this session, we did not provide details on the experimental
hypotheses and the subjects carried out an exercise similar to
those in the experimental tasks in collaboration with the
instructor. During the training session, the subjects were
required to fill in a background questionnaire. The participants
were informed that the data collected in the experiments
were to be used for research purposes and would be treated
as confidential, and that their grade on the course they were
taking would not be affected by the grade obtained in the
experiment. After the introductory lesson, we assigned the
participants to one of the 2 groups in accordance with the
marks obtained in the background questionnaire, thus obtain-
ing balanced groups. Those subjects who did not come to the
training session were randomly assigned to the groups, which
in some cases led to unbalanced groups (a difference of 1
subject).
� Execution session: The execution of the experiment took place

in the second session, in a classroom, where the students
were supervised by the instructor of the course (a different
one depending on the replication) and one experimenter
(always the same one), and no communication between
them was allowed. Each of the groups was given a different
treatment.

After the execution of the experiment, the data collected from
it were placed on an excel sheet, following an answering diagram
constructed before the experiment was carried out. On this sheet,
each task has a maximum mark (see Table 4), depending on the
correctness of the answer provided. This means that for each task,
a mark was given to the subject depending on the number of cor-
rect lines of code added to the solution. Incorrect answers were
not given negative marks, i.e., lines of code which do not solve
the task.

3.8. Analysis procedure

The data analysis was carried out by considering the following
steps:

1. We first carried out a descriptive study of the measures of
the dependent variable, i.e., MEffec and MEffic in order to
obtain a general overview of the influence of the main factor
(Origin).

2. We then analyzed the characteristics of the data to determine
which parametric or non-parametric test it would be better to
use. We performed a Kolmogorov–Smirnov test [38] to deter-
mine the normality of distributions and a Levene [38] test to
determine the homogeneity of variances. These analyses are
useful in determining which parametric or non-parametric test
it is best to use.

3. Based on the results of the previous test, for the data collected
in each experiment we tested the hypotheses formulated using
the parametric ANOVA test [39] when the results of Kolmogo-
rov–Smirnov test and Levene test were positive. The non-para-
metric Mann–Whitney test [38] was performed when the data
obtained did not satisfy the restrictions of the ANOVA test
(we did not obtain normal distributions, and there is no homo-
geneity of variances).
4. To strengthen the results of each experiment, we decided to
integrate them using a meta-analysis. A meta-analysis is a set
of statistical techniques which are used to combine the differ-
ent effect sizes of the experiments in order to obtain a global
effect of a factor in a dependent variable.

5. We analyzed the influence and the interaction of the cofactor,
i.e., Ability, using statistical tests. The interaction of the Ability
with the main factor (i.e., Origin) was also tested using
interaction plots [39]. Interaction plots are simple line graphs
in which the means on the values of a dependent variable
for each level of one factor are plotted on all the levels of
the second factor. The resulting lines are parallel when there
is no interaction and nonparallel when an interaction is
present.

6. The data collected from the post-experiment survey were even-
tually analyzed using bar graphs. In cases in which a pattern
was detected in the data, these data were also tested with a
T-test [38] owing to their nature.

All the statistical values were calculated using SPSS [40], with
its standard configuration. In all the statistical tests, we decided
to accept a probability of 5% of committing a Type-I-Error [38].
3.9. Documentation and communication

Issues such as documentation [41] and communication among
experimenters [42] may influence the success or the failure of an
experiment performance and its future replications. Laboratory
packages and knowledge-sharing mechanisms were used to handle
these issues. The material was originally written in Spanish for
E-US1 and R-US2, and was then translated into Italian for R-UB.
The material included: the post-experiment survey, the modifica-
tion questionnaires, the data collection forms, the source code
and the UML diagrams (two versions: D and RE). The groups of
experimenters also shared a document to provide a common back-
ground so as to be able to communicate all terms related to the
design and analysis of the experiment.

The experimenters (the first three authors of the paper)
began with an initial face-to-face meeting in which the main
ideas of the experiments were discussed and reported in an
agreement document. All the experimenters then exchanged
the agreement documents from the meeting by e-mail to attain
a shared common research plan. This phase played a significant
role in sharing knowledge among the experimenters and in the
discussions on possible issues related to the study that might
arise.

The experimenters used instant messaging tools and e-mails to
establish a communication channel in all phases of the study. Tele-
conferences were also held to share knowledge among the research
groups and to discuss the experimental procedure that the partic-
ipants had to follow.
4. Results

In this section, we present the data analysis following the pro-
cedure presented above: the presentation of the descriptive statis-
tics, the test of the hypotheses related to the main factor (Origin),
the analysis of the influence of the cofactor Ability and the analysis
of the post-experiment survey.

Please bear in mind that in some cases the groups are not bal-
anced (there are more subjects in one group than in the other)
owing to the fact that some subjects abandoned the experiment
during its execution.

4.1. Descriptive statistics and exploratory analysis
Origin MEffic

RE FD

N X Median SD N X Median SD

E-US1 20 0.00270 0.00283 0.00079 20 0.00273 0.00303 0.00072
R-US2 22 0.00261 0.00245 0.00106 28 0.00350 0.00352 0.00147
R-UB 39 0.00217 0.00204 0.00087 39 0.00255 0.00183 0.00406
Tables 6 and 7 show the descriptive statistics of the Maintain-
ability measures, i.e., MEffec and MEffic respectively, grouped by
the Origin of the UML diagrams. These tables contain the following
data: number of subjects (N), mean (X), median, and standard devi-
ation (SD).

At a glance, we can observe that when the subjects used FD dia-
grams they obtained better values (although the difference is very
low in both measures when comparing means (only in the case of
MEffec in R-UB are the results are better with RE diagrams). This
indicates that there is a slight tendency towards FD diagrams
improving the performance of software code maintainers.
4.2. Influence of origin of diagram

In order to test the formulated hypotheses (H1,0, H2,0) we
analyzed the effect of the main factor (i.e. Origin) on the measures
considered (i.e., MEffec and MEffic) using the non- parametric
Mann–Whitney or ANOVA test, depending on the normality of data
(as explained in Section 3.7).

In the following subsections, the results for each measure of the
Mann–Whitney U tests or ANOVA tests are shown in tables (Tables
8 and 9), in which the Origin column describes the independent
variable, p-value is the statistical significance obtained, op is the
estimated observed power of the test, es is the effect size, and R
describes whether the data obtained allows us to reject the null
hypothesis, while the tendency of the data in the case of the null
hypothesis being rejected is shown in the ‘‘in favour of. . .’’ column.

The results obtained for each hypothesis will be commented on
in their corresponding subsections.

For each measure, we first decided to analyze the data related to
maintenance in general, as is presented in the formulated hypoth-
esis. We then made the decision to analyze the results by dividing
them by the type of maintenance, since there may have been dif-
ferences between the results from the adaptive and the corrective
maintenance.
Table 6
Descriptive statistics for MEffec.

Origin MEffec

RE FD

N X Median SD N X Median SD

E-US1 20 0.641 0.6818 0.165 20 0.650 0.6818 0.148
R-US2 23 0.597 0.5909 0.223 28 0.667 0.6818 0.174
R-UB 39 0.512 0.5000 0.171 39 0.441 0.4091 0.219
4.2.1. Testing maintenance effectiveness: MEffec (H1,0)
The first row of Table 8 shows that we cannot reject H1,0 in the

first experiment (E-US1) and the first replication (R-US2) given
that their p-value is greater than 0.05. Hence, here the different ori-
gins of UML diagrams had no effect on the subjectś effectiveness
when performing the source code maintenance tasks. The observed
power of the test is low, probably because of a small effect size, so
we assume a 0.946 (1–0.054) and a 0.755 (1–0.245) estimated
probability of a Type II error in our assertions. Given the low value
of the observed power, we cannot obtain strong conclusions from
E-US1 and R-US2.

In the case of the second replication, the p-value is 0.047, i.e.,
lower than 0.05, and we can therefore reject the null hypothesis.
In this case we can assume that there is a difference in the mainte-
nance effectiveness when using RE diagrams or FD diagrams in
favor of RE diagrams. What is more, the power of the test is quite
high in this case but it is still not sufficient for us to be confident of
the results, because there is a probability of 65% of committing a
Type II error in our assertion.

We also performed an analysis of the influence of the Origin on
maintenance effectiveness per type of maintenance, i.e., adaptive
and corrective maintenance. The results were not significant in
all the cases because the p-value is always greater than 0.05. The
same occurred when the MEffec as regards the time spent main-
taining the system (without relating this to the number of correct
answers) was tested.

4.2.2. Testing maintenance efficiency: MEffic (H2,0)
The numbers in Table 9 shows that in the case of E-US1 and R-

UB there are no significant effects (the p-values are not smaller
than 0.05) as regards the Origin of UML diagrams on maintenance
efficiency and that, in this case, the statistical power is still very
low. But, if the null hypothesis were to be accepted, we would be
assuming a 0.949 (i.e., 1–0.051) estimated probability of a Type II
error.

But as was the case with MEffec, there is one case in which
there is an influence of the Origin on the maintainability efficiency
in favor of FD diagrams. In this case, in R-US2 the p-value is 0.049,
and the null hypothesis is therefore rejected.

Once again, an analysis of the influence of the Origin on mainte-
nance efficiency per type of maintenance, i.e., adaptive and correc-
tive maintenance, was performed. In this case, the results were not
significant either (the p-values are greater than 0.05).

We also attempted to measure MEffic as regards the time spent
maintaining the system, without relating this to the number of
correct answers (as was done before). In this case, the p-value
was again higher than 0.05 (i.e., p-value = 0.725) but with a higher
statistical power (i.e., op = 0.5). The same result was obtained in
the test with the MEffic measure as regards the time spent main-
taining the system (without relating this to the number of correct
answers).

4.2.3. Integrating the obtained results through meta-analysis
When the different effect sizes of the experiments need to be

combined to obtain a global effect of a factor, the statistical tech-
nique used is that of meta-analysis. Although we have found some
significant results: in favor of RE diagrams in relation to MEffec in

Table 7
Descriptive statistics for MEffic.

Origin MEffic

RE FD

N X Median SD N X Median SD

E-US1 20 0.00270 0.00283 0.00079 20 0.00273 0.00303 0.00072
R-US2 22 0.00261 0.00245 0.00106 28 0.00350 0.00352 0.00147
R-UB 39 0.00217 0.00204 0.00087 39 0.00255 0.00183 0.00406

Table 8
Statistical relation between Origin of diagram (RE/FD) and Maintainability Effective-
ness (MEffec).

Origin MEffec

Test p-Value op es R In favour of. . .

E-US1 Man-Withney 0.957 0.054 0.001 No –
R-US2 ANOVA 0.202 0.245 0.033 No –
R-UB Man-Withney 0.047 0.352 0.033 Yes RE diagrams

Table 9
Statistical relation between Origin of diagram (RE/FD) and Maintainability Efficiency
(MEffec).

Origin MEffic

Test p-Value op es R In favour of. . .

E-US1 Man-Withney 0.534 0.051 0.0003 No –
R-US2 Man-Withney 0.049 0.343 0.049 Yes FD diagrams
R-UB Man-Withney 0.272 0.088 0.004 No –
R-UB, and in favor of FD diagrams in relation to MEffic in R-US2,
there are no significant results in the remaining cases. We have
therefore decided to integrate the results of the different studies
through a meta-analysis (in which the factor is the Origin of UML
diagrams and how this affects the modifiability of source code),
in order to explore if stronger results can be found. This technique
has been used for the same purpose in other families of experi-
ments, such as that shown in [43].

For each dependent variable, we computed the mean value
obtained by the participants when using RE diagrams, minus the
mean value they obtained with FD diagrams, and these values were
then used to compute the Hedges’ g metric [44], [45]. The overall
conclusion was obtained by calculating the Z score based on the
mean and standard deviation of the Hedges’ g statistics of the
experiments. The global effect size was therefore obtained by using
the Hedges’ g metric, with the weights proportional to the experi-
ment size:

Z ¼
P

iwiziP
iwi

where wi = 1/(ni-3) and ni is the sample size of the i-th experiment.
The higher the value of Hedges’ g, the higher the corresponding
mean difference. An effect size of 0.5 indicates that the mean value
obtained when using FD diagrams is half a standard deviation larger
than the mean value obtained when not using them.

As suggested in [45], the effect size can be classified as: small
(S) for values between 0 and 0.37, medium (M) for values between
0.38 and 1.0, and large (L) for values above 1.00.

The meta-analysis was performed by using the Comprehen-
sive Meta-Analysis v2 tool [46]. For each measure, the tool pro-
duced the forest plots depicted in Figs. 5 and 6. The squares and
diamonds are mostly proportional in size to each study’s weight
under the fixed effect model (see the ‘Relative weight’ column).
The squares show the individual effect size of each experiment
and the diamond shows the global effect size. The values of
the Hedges’ g metric are also reported. Positive values indicate
that the use of FD diagrams improves the modifiability of source
code. Negative values signify that RE diagrams are the best
treatment.

If we focus on the results obtained for the MEffec variable (see
Fig. 5), the total effect is in favor of using FD diagrams, but the
global effect size obtained is not statistically significant since the
p-value is greater than 0.05. The value obtained for the Hedge’s g
metric, i.e., 0.282, indicates a small size for the global effect. Similar
results were obtained for MEffic (see Fig. 6), where the total effect
is again in favor of FD diagrams, but the size of the effect is small. In
both cases, if the coincidence interval were to be increased to 90%
instead of 95%, then the meta-analysis would be significant
because the p-values would not be greater than 0.10.

4.3. Influence of Ability

We tested whether the subjects’ Ability influenced the results
but. The effect of this factor could not be confirmed because the
p-value found was higher than 0.05 in all of the cases (see
Table 10), i.e., the subjects’ Ability had no statistical influence
on the results. This was expected owing to the balanced design
of the experiment.

The interaction plot shown in Fig. 7 indicates that there was no
interaction between Origin and Ability for MEffec. In the case of
E-US1 and R-US2, high ability participants achieved better scores
than low ability ones when both of them were using RE and FD dia-
grams. The interaction plot also suggests that the results achieved
with FD diagrams are better than those obtained with RE diagrams
for both high and low ability participants. This might be owing to
the fact that RE diagrams contain too many details when compared
with FD diagrams. In particular, RE sequence diagrams are twice as
large in terms of messages when compared to FD diagrams. This
could be because FD diagrams only contain logical messages
between objects, and that messages between other kinds of objects
are obviated, such as objects from Java packages, which are shown
in RE diagrams. This difference between RE and FD diagrams is
based on their nature, owing to the fact that human based dia-
grams contain less technical details than RE diagrams. In the case
of R-UB, the effect of the combination of the Ability and the Origin
is contrary to the other cases, i.e., the results achieved with RE dia-
grams are better than those obtained with FD diagrams for both
high and low ability participants.

As with MEffec, the influence of the subjects’ Ability and the
Origin in the case of MEffic was also represented on an interaction
plot. The interaction plot shown in Fig. 8 indicates that there was a
clear interaction between Origin and Ability for MEffic. In this case,
high Ability participants achieved better scores using the FD
diagrams, and low Ability participants did better using the RE dia-
grams (except in the case of R-US2). This might be explained by the
fact that RE diagrams have a very high traceability with source
code, so inexperienced maintainers would prefer this kind of dia-
grams. However, experienced maintainers do not need very high
traceability, because using FD diagrams might allow them to

Fig. 5. Meta-analysis results for Maintainability Effectiveness (MEffec).
obtain sufficient information to attain a correct overview of how
the system works.

4.4. Post-experiment survey results

The analysis of the answers to the post-experiment survey
revealed that the time needed to carry out the modification tasks
(Fig. 9) was not considered to be sufficient (more time was
needed), and that the subjects considered that the performance
of the tasks was of more or less low-medium difficulty (Fig. 10),
independently of the particular treatment received. The need for
more time to perform the tasks may have arisen from the fact that
the measurement of the time needed was derived from the pilot
study, which was performed by PhD students, who probably had
higher ability and/or more experience than these Master’s stu-
dents, signifying that the less experienced subjects needed more
time. We would also like to state that some subjects did not finish
the questionnaire owing precisely to this lack of time.

We also asked about the subjects’ perception of the adequacy of
the LoD of the diagrams used. The majority of the subjects who
received FD diagrams agreed with the LoD of the diagrams they
received (i.e., they considered the LoD as the ‘‘right’’ amount of
detail). In the case of those subjects who received RE diagrams,
the majority agreed with the LoD presented, but of those subjects
who did not, the majority required more LoD (Fig. 11).

The subjects who received FD diagrams experienced fewer
difficulties when reading the diagrams used, in comparison with
the RE group, as is shown in Fig. 12. We tested whether there
was a difference as regards the difficulties experienced by subjects
depending on the diagrams they used. This was done by using a
Mann–Whitney test owing to the nature of the data, and this test
was carried out by comparing the subjects’ responses (from
1 = very low to 5 = very high) grouped by the UML diagrams that
they had used (RE or FD diagrams). The results of the test show a
significant difference (p-value = 0.007, which is lower than
a = 0.05). The power of the test is high (0.743), and this therefore
allows us to state that the subjects who received RE diagrams
experienced more difficulties when reading diagrams than those
who received FD diagrams.

As part of the post-experiment survey, the subjects were
required to indicate how useful the diagrams were for them in gen-
eral as regards solving tasks. Class diagrams are considered useful
in both groups, in more or less the same proportion (Fig. 13).
Having said that, the majority of the subjects who received the
RE diagrams commented that the sequence diagrams employed
were not useful and were very difficult to understand, as opposed
to the majority of the subjects in the D group who considered them
helpful (Fig. 14). This finding may have been caused by the differ-
ent complexities and varying LoD in the different kinds of dia-
grams, as explained in previous sections.

A Mann–Whitney test was then used (owing to the nature of
the data) to test whether there was a difference as regards the sub-
jects’ perceived usefulness of the sequence diagrams depending on
the diagrams they used. The test was carried out with the same
configuration as explained in the test for the difficulties when
reading the diagrams. The results of the test again show a signifi-
cant difference (p-value = 0.002, which is lower than a = 0.05).
The power of the test is high (0.88), and this therefore allows us
to state that the subjects who received RE sequence diagrams con-
sidered them to be less helpful than the sequence diagrams in
comparison to those who received FD sequence diagrams.

The results of the post-questions concerning the artifacts used
to answer the questions led us to detect that almost all the subjects
used the source code to solve the tasks. This was expected, in the
sense that source code is needed when it is being maintained.
The use of the source code was from 7% to 25% higher in the RE
group than in the D group.

We then analyzed whether or not the subjects had used the dia-
grams (Table 11). Class diagrams were also used by the majority of
subjects (except in the case of the D group in R-UB). These percent-
ages are consistent with the subjective response provided in the
post-experiment survey (see Fig. 13). In the case of the RE group,
the subjects used class diagrams in more or less the same propor-
tion for corrective or perfective tasks, but in the case of the D
group, the subjects used from 7% to 27% more class diagrams for
perfective tasks. This may have occurred because class diagrams
provide the structure of the system, thus allowing maintainers to
obtain an overview of the system faster, which would appear to
be easier with the FD diagrams owing to their conciseness; this
is more important for perfective tasks. If we focus on the use of
sequence diagrams, we would like to highlight that their use was
surprisingly low; in general, only 20–41% of the subjects used
them. That is consistent with the RE group subjects’ opinions
(Fig. 14), in which they indicate that they did not use sequence dia-
grams, and they also believe that they are not useful diagrams for
understanding the system during its maintenance. In the case of
the D group, there is an inconsistency arising from the fact that
the subjects did not use sequence diagrams in most of the tasks,
even though they considered them to be useful (see Fig. 14).
Subjects from both groups (except the RE group of R-US2) used
the sequence diagram more in corrective tasks than in perfective
tasks (a difference of 2–50%). The reason for this could be that

Fig. 6. Meta-analysis results for Maintainability Efficiency (MEffic).

Table 10
Statistical relation between ability and Maintainability Effectiveness (MEffec) and
Efficiency (MEffic).

Ability MEffec MEffic

E-US1 0.226 0.914
R-US2 0.460 0.939
R-UB 0.470 0.995

Fig. 7. Interaction between origin and ability f

Fig. 8. Interaction between Origin and Abilit
for corrective tasks, in which maintainers need to localize an error,
structure and behavior are needed, since the error might be caused
by a structural error or by a behavior error.
4.5. Summary and discussion of the data analysis

The experiment (E-US1) was performed with 40 students from
the University of Seville (Spain), and it was replicated in the same
or Maintainability Effectiveness (MEffec).

y for Maintainability Efficiency (MEffic).

Fig. 9. Subjects’ answers as regards adequacy of time provided.

Fig. 10. Subjects’ answers as regards difficulty of task.

Fig. 11. Subjects’ answers as regards adequacy of the LoD.

Fig. 12. Subjects’ answers as regards to difficulties when reading diagrams.
university with 51 students (R-US2) and in the University of Bari,
Italy, with 78 students (R-UB).

Descriptive statistic results show that subjects using FD UML
diagrams obtained better values in both measures (except in the
case of MEffec in R-UB), indicating that FD diagrams may, to some
extent, improve the maintenance of the source code, but that the
differences are very slight.

As regards the results of the statistical test, in almost all of the
cases the variables (i.e., MEffec and MEffic) are not significantly
affected by the Origin of the UML diagrams, i.e., the results of the
tests performed did not allow us to reject any of the null hypothe-
ses presented in section III in almost all cases, as all the significance
levels are above 0.05. The test powers are low, so the possibility of
an error occurring as a result of accepting the null hypothesis is
high. But if we focus on the case of R-US2, the results of the MEffic
were influenced by the Origin, thus obtaining a high test power.
The same occurred in the case of R-UB with MEffec, where there
is a clear difference in favor of FD diagrams.

Despite the fact that the results were not conclusive in all the
cases (which is not as positive as we expected), we have ensured
that the experimental results were not influenced by other cofac-
tors such as the subjects’ Ability. If we focus on the interaction
between Origin and Ability, in the case of E-US1 and R-US2, the sub-
jects using FD diagrams achieved better results than those who
used RE diagrams, in the case of both high and low ability partici-
pants. This may have been caused by the fact that RE diagrams con-
tain too many details when compared with FD diagrams. In the
case of R-UB, the effect of the combination of the Ability and the
Origin is contrary to the other cases, i.e., the results achieved with
RE diagrams are better than those obtained with FD diagrams in
the case of both high and low ability participants. The low ability
users obtained more benefits from RE diagrams than from FD dia-
grams in terms of efficiency owing to the high traceability between
RE diagrams and code.

The results of the family of the experiments are summarized in
Table 12.

After the individual analysis, a meta-analysis was performed in
order to clarify the results. Its results also show a tendency in favor
of FD diagrams for both measures (MEffec and MEffic). But in both
cases, the results are not clearly evident owing to the values of the
p-values.

Moreover, if we study the results of the post-experiment sur-
vey, we can see better subjective results for the FD diagrams. This

Fig. 13. Subjects’ answers as regards usefulness of class diagram used.

Fig. 14. Subjects’ answers as regards usefulness of sequence diagrams used.

Table 11
Usage of UML diagrams for solving tasks.

Exp. Usage of class diagrams Usage of sequence diagrams

RE (%) D (%) RE (%) D (%)

E-US1 80 74 33 33
R-US2 59 69 23 29
R-UB 67 40 41 20
is because the subjects who received RE diagrams did not believe
their sequence diagrams to be useful, since they were not under-
standable. Significant results were obtained, showing that the
subjects who received RE diagrams experienced more difficulties
when reading the diagrams used; this is especially true as regards
sequence diagrams. In the case of the D group, there was an
inconsistency arising from the fact that the subjects did not use
sequence diagrams in most of the tasks, even though they consid-
ered them to be useful.

We would like to underline that, according to the results of the
post-question for each maintenance task concerning the use of
artifacts in task solving, UML class diagrams were used in more
or less in the same proportion as the source code for system under-
standing during the maintenance tasks. The sequence diagram was
less widely-used, probably because of the nature of the tasks pre-
sented during the course of this experiment (more perfective
maintenance tasks were required than corrective maintenance
tasks). As stated previously, UML diagrams are not usually updated
during maintenance tasks owing to the time constraints in realistic
environments. But the high level of use of class diagrams during
this experiment leads us to recommend companies to keep them
up to date in order to improve maintainers’ performances.
5. Implications of the study

No evident overall pattern emerges from the family of experi-
ments of this study – especially when limiting to the statistics of
the experiments: when considered individually 1 out of 3 experi-
ments does not provide statistically significant results in favour
of either RE or FD diagrams.

The experiments showed that high Ability participants achieved
better scores using the FD diagrams, and low Ability participants
did better using the RE diagrams (except in the case of R-US2). This
might be explained by the fact that RE diagrams have a very high
traceability with source code, so inexperienced maintainers would
prefer this kind of diagrams. This group may find it difficult to
make mentally bridge the gap between source code and high level
class diagram. However, experienced maintainers do not need very
high traceability, because using FD diagrams might allow them to
obtain sufficient information to attain a correct overview of how
the system works.

The key characteristics of RE and FD diagrams that we compare
in this study are the following: RE diagrams are complete and close
to source code. Man-made FD diagrams are almost never complete,
but their strength seems to be the selective inclusion of informa-
tion about the system and modest complexity of the diagrams.

Findings from the post-experiment survey show that subjects
who received FD diagrams experienced fewer difficulties when
reading the diagrams compared to the RE group (p-value = 0.007),
especially with the class diagrams. At the same time, RE sequence
diagrams were found less useful than FD sequence diagrams
(p-value = 0.002). A possible explanation for this is that human
engineers make (implicit) assessments regarding which informa-
tion is important for understanding key aspects of the system
and thus regarding which information should be included in a
diagram. We believe the findings of our experiments indicate that
FD class diagrams provide a more attractive balance between detail
and relevant information than RE class diagrams. For sequence
diagrams, it seems that current automated Reverse Engineering
methods are not able to filter out the relevant information for
maintenance tasks.

On the other hand, for performing the maintenance tasks in our
study, participants found that source code source to be the most
useful source of information, closely followed by the class dia-
grams. The participants therefore perceived that UML diagrams
might add little value over access to the source code for the tasks
in our study. This result is relevant for the researcher because it
might be interesting to investigate the motivation guiding a soft-
ware engineer when trusting in a source of information and how
he/she exploits it to accomplish a maintenance task.
6. Threats to validity

We must consider certain issues which may have threatened
the validity of the experiment [29]:

Table 12
Summary of the results of the family of experiments.

Exp_ID Descriptive statistics (in
favour of. . .)

Influence of
origin

Influence of
ability

MEffec MEffic MEffec MEffic MEffec MEffic

E-US1 FD FD
R-US2 FD FD
R-UB RE FD

Legend.
Descriptive statistics:
‘‘FD’’ = Better results when using FD diagrams than RE diagrams.
‘‘RE’’ = Better results when using RE diagrams than FD diagrams.
‘‘–’’ = No differences when using FD or RE diagrams.
Influence of origin:

= Hypothesis not rejected ? there is no significant difference in the results when
working with FD or RE UML diagrams.

= Hypothesis rejected ? there is a significant difference in the results when
working with FD or RE UML diagrams (expected value).
Influence of ability:

= Hypothesis not rejected ?There is no significant difference in the results when
working with high or low ability students (expected value).

= Hypothesis rejected ? there is a significant difference in the results when
working with high or low ability students.
� External validity: External validity can be threatened when
experiments are performed with students, and the representa-
tiveness of these subjects may be doubtful in comparison to
that of software professionals. In spite of this, the tasks to be
performed did not require high levels of industrial experience,
so we believe that this experiment could be considered appro-
priate, as it follows suggestions made in the relevant literature
[25,30,47]. Working with students also implies various advanta-
ges, such as the fact that their prior knowledge is fairly homo-
geneous, there is the possible availability of a large number of
subjects [48], and there is the opportunity to test experimental
design and initial hypotheses [49]. An additional advantage of
using novices as subjects in experiments on maintainability is
that the cognitive complexity of the objects under study is not
hidden by the subjects’ experience. Nevertheless, it would be
extremely interesting to carry out further replications of the
experiment with practitioners.
Another threat to external validity concerns the experimental
material used. The selected system is representative of a small
industrial system. In addition, the experimental objects are
small. The results of the experiments might be different when
using bigger systems and experimental objects. The size of the
experimental objects could also threaten the external validity
of the results. The rationale for selecting the experimental
objects used relies on the need (owing to time constraints) to
simulate actual maintenance tasks related to small mainte-
nance operations that novice software engineers and/or junior
programmers may perform in a software company.
� Internal validity: Threats to internal validity were mitigated by

the design of the experiment. Each subject was grouped by
his/her results in the background questionnaire, so both groups
had subjects with a similar skill level. In all the cases, the sub-
jects’ knowledge of UML and JAVA was reinforced by teaching
them about UML diagrams and JAVA in a training session orga-
nized to take place the day before the experiment was carried
out, but their knowledge was sufficient for them to understand
the given system, and they all had roughly the same back-
ground (which was tested with a background questionnaire).
Furthermore, all the participants found the material provided,
the tasks, and the goals of the experiment to be clear, as the
post-experiment survey results showed. Another safeguard
was that the instrumentation was tested in a pilot study, to
check its validity. In addition, mortality threats were mitigated
by offering the subjects the possibility of performing similar
tasks in the final exam of the course that they were taking.
Another issue that is a potential threat is the exchange of infor-
mation among the participants. We must emphasize that the
participants were not allowed to communicate with each other,
and were prevented from doing so by being monitored during
the run of the experiment. When the experiment had con-
cluded, the participants were asked to give back all the experi-
mental material.
� Construct validity: This validity may be influenced by the mea-

sures used to obtain a quantitative evaluation of the subjects’
performance, the maintenance tasks, and the post-experiment
survey, in addition to social threats. We performed the experi-
ment in a really short period of time owing to the subjects’ con-
straints. The small amount of time that the students were given
to perform the tasks could have influenced the results of this
experiment, as could the small number of tasks, which was again
owing to constraints on our subjects’ time. The measures used
were selected to achieve a balance between the correctness
and completeness of the answers, which are well-known mea-
sures and are widely-used in this kind of experiments. The ques-
tionnaires were defined to obtain sufficiently complex questions,
without them being too obvious. The post-experiment survey
was designed using standard forms and scales. Social threats
(e.g., evaluation apprehension) have been avoided, since the stu-
dents were not graded on the results obtained. Absenteeism was
avoided by performing similar tasks to the exercises that would
appear in their final exam.
Based on the results of these pilot study, we consider that the
two experimental objects fit the time constraints of the exper-
iment in that they are sufficiently realistic for small mainte-
nance operations that novice software engineers perform
within a software company [50].
The experimental material delivered to the subjects consisted of
the UML diagrams (class and sequence diagrams) and the JAVA
source code of the system, the answer sheets, and the post-
experiment survey.
� Conclusion validity: Conclusion validity concerns the data collec-

tion, the reliability of the measurement, and the validity of the
statistical tests, all or any of which might affect the ability to
draw a correct conclusion. Statistical tests were used to reject
the null hypotheses, but the fact that subjects performed a
small number of tasks provided us with few data points to work
with. These particular statistical tests were selected by checking
that they followed the specific assumptions related to their use.
We have explicitly mentioned and discussed all those cases in
which non-significant differences were present.

7. Conclusions and future work

As software maintenance takes up a major part of software pro-
jects, we are interested in investigating which documentation is
more helpful in supporting maintainers when they have to main-
tain source code, This paper specifically presents a family of exper-
iments that were carried out to investigate whether using either FD
or RE UML diagrams (class and sequence diagrams) improve the
maintainer’s performance when modifying source code. We there-
fore wished to ascertain whether it is beneficial to build UML
diagrams in the initial phases of development and kept them up-
to-date (which consumes more effort) or whether on the contrary
it is better to rely on UML diagrams obtained by Reverse Engineer-
ing the source code.

The original experiment (E-US1) was carried out by 40 s-year
students on a Master’s Degree in Computer Science. The first repli-
cation (R-US2) was conducted by 51 students enrolled on the same
degree and at the same university as the experiment. The second

replication (R-UB) was performed with 78 s-year Laurea Degree
students in Computer Science at the University of Bari.

The statistical results, and specifically the statistical test and the
descriptive results, show a tendency towards obtaining better
results when using UML diagrams (concretely class diagrams), that
were hand-made during the design phase. Based on the qualitative
results of the post-experiment survey, it is also important to note
that the subjects preferred FD diagrams when understanding and
maintaining a system. This is true even though their performance
is not much better with FD diagrams in some cases, in comparison
to their performance with RE diagrams. Because software mainte-
nance is a human-based process, this highlighting of maintainers’
perceptions in favor of using FD diagrams is very important.

In addition, we found that subjects who received RE diagrams
experienced more difficulties when reading the diagrams, espe-
cially the sequence diagrams. Although the subjects who received
FD diagrams felt that sequence diagrams were highly useful, as
they expressed in the post-experiment survey, only a small num-
ber of subjects actually used the diagrams for the tasks in the
experiment. In the case of the RE diagram group, the subjects did
not use RE sequence diagrams. These subjects point out that these
RE sequence diagrams are not very useful due to their low level of
readability/high level of details. Even though the results of the
family of experiments are not homogenous in all the experiments,
the evidence shown in the MEffic test in R-US2, the results of the
meta-analysis and the subjects’ opinion extracted in the post-
questionnaire survey point in the direction that software maintain-
ers prefer to use FD UML diagrams over Reverse Engineered UML
diagrams.

These results give us grounds to encourage software developers,
albeit with caution, to follow a model-centric approach in projects
with novel maintainers and small-sized systems related to well-
known domains. Nonetheless, other contexts should be explored
in order to reaffirm the results in an industrial context by carrying
out further replications with professionals, considering more com-
plex systems related to non-well known domains.

The findings obtained imply beginning the development of a
software system by creating UML diagrams, and in addition to keep
them up-to-date, thereby making it easier to perform maintenance
tasks. Class diagrams are important artifacts which are widely used
and highly appreciated by maintainers. However, there is a doubt
as to whether the documentation, and UML as part of it, will be
maintained as the system evolves when a model-centric approach
is used [51]. This goes against an effective use of the diagrams, a
fact that suggests that we should recommend companies to keep
their diagrams up-to-date and thus help their maintainers to per-
form the required tasks efficiently. The results obtained are there-
fore useful for all those companies that exploit this notation as a
support for software maintainers when performing maintenance
tasks.

The recommending on the use of Forward Designed UML dia-
grams (at least the class diagrams) assumes that UML diagrams
were created during software development, and kept up-to-date
during software maintenance. This requires an additional effort
in the software lifecycle in comparison with the automated
generation of UML diagrams from source code through Reverse
Engineering techniques. Currently it seems that Reverse Engineer-
ing techniques are not able to abstract away less important infor-
mation from the source code. Hence diagrams obtained via RE also
require manual effort for simplifying them. The empirical investi-
gation of whether this extra effort is worthwhile is still pending,
but would provide us with knowledge regarding the return on
investment of UML modeling in software maintenance. This topic
has not been explored in detail, and this is necessary if we are to
discover whether UML will have a widely acceptation in industry
and how UML can gain a widely adoption in industry.
Acknowledgments

This research has been funded by the GEODAS-BC Project
(Ministerio de Economía y Competitividad and Fondo Europeo de
Desarrollo Regional FEDER, TIN2012-37493-C03-01). The authors
would like to thank the students who have cooperated in the
experiments.

References

[1] M. Abbes, F. Khomh, Y.-G. Gueheneuc, G. Antoniol, An empirical study of the
impact of two antipatterns, blob and spaghetti code, on program
comprehension, in: Presented at the Proceedings of the European Conference
on Software Maintenance and Reengineering (CSMR’2011), 2011, pp. 181–190.

[2] S.C.B. de Souza, N. Anquetil, K.M. de Oliveira, A study of the documentation
essential to software maintenance, in: Presented at the Proceedings of the
International Conference on Design of communication: documenting &
designing for pervasive information (SIGDOC’2005), 2005, pp. 68–75.

[3] S. Tilley, S. Huang, A Qualitative Assessment of the Efficacy of UML Diagrams as
a Form of Graphical Documentation in Aiding Program Understanding, in:
Presented at the Proceedings of the 21st Annual International Conference on
Systems Documentation (SIGDOC’2003), 2003, pp. 184–191.

[4] E. Tryggeseth, Report from an experiment: impact of documentation on
maintenance, J. Empirical Softw. Eng. 2 (2) (1997) 201–207.

[5] OMG, The Unified Modeling Language. Documents associated with UML
version 2.3, 2010, <http://www.omg.org/spec/UML/2.3>.

[6] A. Nugroho, M.R.V. Chaudron, Evaluating the impact of UML modeling on
software quality: An industrial case study, in: Presented at the Proceedings of
the 12th International Conference on Model Driven Engineering Languages and
Systems (MODELS’09), vol. 181–195, 2009.

[7] A. Nugroho, B. Flaton, M.R.V. Chaudron, Empirical Analysis of the Relation
between Level of Detail in UML Models and Defect Density, in: Presented at the
Proceedings of the International Conference on Model Driven Engineering
Languages and Systems (MoDELS’2008), 2008, pp. 600–614.

[8] E. Arisholm, L.C. Briand, S.E. Hove, Y. Labiche, The impact of UML
documentation on software maintenance: an experimental evaluation, IEEE
Trans. Software Eng. 32 (6) (2006) 365–381.

[9] W.J. Dzidek, E. Arisholm, L.C. Briand, A realistic empirical evaluation of the
costs and benefits of UML in software maintenance, IEEE Trans. Software Eng.
34 (3) (2008) 407–432.

[10] B. Berenbach, S. Konrad, Putting the ‘Engineering’ into Software Engineering
with Models, in: Presented at the Proceedings of the International Workshop
on Modeling in Software Engineering (MISE ’07), ICSE Workshop, 2007, p. 4.

[11] B. Anda, K. Hansen, I. Gullesen, H.K. Thorsen, Experiences from introducing
UML-based development in a large safety-critical project, Empirical Softw.
Eng. 11 (4) (2006) 555–581. December.

[12] G. Scanniello, C. Gravino, M. Genero, J.A. Cruz-Lemus, G. Tortora, On the Impact
of UML Analysis Models on Source Code Comprehensibility and Modifiability,
Acm. T. Softw. Eng. Meth. 23 (2) (2013). Art.13.

[13] A. Nugroho, M.R.V. Chaudron, A Survey of the Practice of Design – Code
Correspondence Amongst Professional Software Engineers, in: Proceedings of
the First International Symposium on Empirical Software Engineering and
Measurement (ESEM’2007), Washington, DC, USA, 2007, pp. 467–469.

[14] A. Nugroho, Level of detail in UML models and its impact on model
comprehension: a controlled experiment, Inf. Softw. Technol. 51 (12) (2009)
1670–1685.

[15] A.M. Fernández-Sáez, M. Genero, M.R.V. Chaudron, Does the Level of Detail of
UML Models Affect the Maintainability of Source Code?’’, in: Proceedings of
the Experiences and Empirical Studies in Software Modelling Workshop
(EESSMod’11) at MODELS 2011, Wellington, New Zealand, 2012, pp. 133–
147.

[16] R. Perez-Castillo, I.G.-R. de Guzman, M. Piattini, C. Ebert, Reengineering
technologies, IEEE Softw. 28 (6) (2011) 13–17.

[17] H. Osman, D. Stikkolorum, A. van Zadelhoff, M.R.V. Chaudron, UML Class
Diagram Simplification: What is in the developer’s mind?’’, in: Presented at
the Proceedings of the 2012th international conference on Models in Software
Engineering (MODELS’2011), Experiences and Empirical Studies in Software
Modelling Workshop (EESSMoD’2012), 2012.

[18] A.M. Fernández-Sáez, M.R.V. Chaudron, M. Genero, I. Ramos, Are forward
designed or reverse-engineered UML diagrams more helpful for code
maintenance?: a controlled experiment’’, in: Proceedings of the 17th
International Conference on Evaluation and Assessment in Software
Engineering, New York, NY, USA, 2013, pp. 60–71.

[19] A.M. Fernández-Sáez, M. Genero, M.R.V. Chaudron, Empirical studies
concerning the maintenance of UML diagrams and their use in the
maintenance of code: a systematic mapping study, Inf. Softw. Technol. 55
(7) (2013) 1119–1142.

[20] G. Scanniello, C. Gravino, G. Tortora, Does the Combined use of Class and
Sequence Diagrams Improve the Source Code Comprehension? Results from a
Controlled Experiment’’, in: Proceedings of the Experiences and Empirical
Studies in Software Modelling Workshop (EESSMoD́2012), 2012.

[21] A. Karahasanovic, R. Thomas, Difficulties experienced by students in
maintaining object-oriented Systems: an empirical study, in: Proceedings of

http://refhub.elsevier.com/S0950-5849(14)00131-1/h0020
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0020
http://www.omg.org/spec/UML/2.3
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0040
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0040
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0040
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0045
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0045
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0045
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0055
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0055
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0055
http://refhub.elsevier.com/S0950-5849(14)00131-1/h9000
http://refhub.elsevier.com/S0950-5849(14)00131-1/h9000
http://refhub.elsevier.com/S0950-5849(14)00131-1/h9000
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0070
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0070
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0070
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0080
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0080
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0095
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0095
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0095
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0095

the Australasian Computing Education Conference (ACE’2007), 2007, pp. 81–
87.

[22] G. Scanniello, C. Gravino, G. Tortora, Investigating the Role of UML in the
Software Modeling and Maintenance – A Preliminary Industrial Survey, in:
Proceedings of the 12th International Conference on Enterprise Information
Systems (ICEIS’2010), Funchal, Madeira, Portugal, 2010, vol. 3, pp. 141–148.

[23] B. Dobing, J. Parsons, How UML is used?, Commun ACM 49 (5) (2006) 109–113.
[24] M. Genero, A.M. Fernández-Sáez, H.J. Nelson, G. Poels, M. Piattini, A systematic

literature review on the quality of UML models, J. Database Manage. 22 (2011)
46–70. July.

[25] V. Basili, F. Shull, F. Lanubile, Building knowledge through families of
experiments, IEEE Trans. Software Eng. 25 (4) (1999) 456–473.

[26] K.R. Popper, The Logic of Scientific Discovery, Hutchinson & Co, Cambridge,
1959.

[27] N. Juristo, A. Moreno, Basics of Software Engineering Experimentation, Kluwer
Academic Publishers, 2001.

[28] A. Jedlitschka, M. Ciolkowoski, D. Pfahl, Reporting experiments in software
engineering, in: F. Shull, J. Singer, D.I.K. Sjøberg (Eds.), Guide to Advanced
Empirical Software Engineering, Springer Verlag, 2008.

[29] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, A. Wesslén,
Experimentation in Software Engineering: an Introduction, Springer,
Norwell, MA, USA, 2012.

[30] V. Basili, D. Weiss, A methodology for collecting valid software engineering
data, IEEE Trans. Software Eng. 10 (6) (1984) 728–738.

[31] M. Grossman, J.E. Aronson, R.V. McCarthy, Does UML make the grade? Insights
from the software development community, Inf. Softw. Technol. 47 (6) (2005)
383–397. April.

[32] J. Erickson, K. Siau, Theoretical and practical complexity of modeling methods,
Commun. ACM 50 (8) (2007) 46–51.

[33] W. Heijstek, M.R.V. Chaudron, Empirical Investigations of Model Size,
Complexity and Effort in a Large Scale, Distributed Model Driven
Development Process, in: presented at the 35th Euromicro Conference on
Software Engineering and Advanced Applications, 2009. SEAA ’09, 2009, pp.
113–120.

[34] R.E. Kirk, Experimental Design. Procedures for the Behavioural Sciences,
Brooks/Cole Publishing Company, 1995.

[35] ISO/IEC, ISO/IEC 14764–1999: Software Engineering Maintenance, 1999.
[36] E.B. Swanson, The dimensions of maintenance, in: Proceedings of the 2nd

International Conference on Software Engineering (ICSE 1976), San Francisco,
California, United States, 1976, pp. 492–497.
[37] A.N. Oppenheim, Questionnaire Design, Interviewing and Attitude
Measurement, Pinter Publishers, 1992.

[38] D. Sheskin, Handbook of Parametric and Nonparametric Statistical Procedures,
Chapman and Hall, Fourth, 2007.

[39] J.L. Devore, N. Farnum, Applied Statistics for Engineers and Scientists. Duxbury,
1999.

[40] SPSS, SPSS 12.0, Syntax Reference Guide. Chicago, USA: SPSS Inc., 2003.
[41] F. Shull, M.G. Mendonça, V.R. Basili, J. Carver, J.C. Maldonaldo, S. Fabbri, G.H.

Travassos, M.C. Ferreira, Knowledge-sharing issues in experimental software
engineering, Empirical Softw. Eng. 9 (1–2) (2004) 111–137.

[42] S. Vegas, N. Juristo, A. Moreno, M. Solari, P. Letelier, Analysis of the influence of
communication between researchers on experiment replication, in:
Proceedings of the ACM/IEEE international Symposium on Empirical
Software Engineering (ISESE’2006), 2006, pp. 28–37.

[43] J.A. Cruz-Lemus, M. Genero, D. Caivano, S. Abrahão, E. Insfrán, J.A. Carsí,
Assessing the influence of stereotypes on the comprehension of UML sequence
diagrams: a family of experiments, Inf. Softw. Technol. 53 (12) (2010) 1391–
1403.

[44] L.V. Hedges, I. Olkin, Statistical Methods for Meta-Analysis, Academia Press,
1985.

[45] V. Kampenes, T. Dybå, J.E. Hannay, D.I.K. Sjoberg, A systematic review of effect
size in software engineering experiments, Inf. Softw. Technol. 49 (11–12)
(2007) 1073–1086.

[46] Biostat, Comprehensive Meta-Analysis v2. Englewood, NJ, USA: Biostat, 2006.
[47] M. Höst, B. Regnell, C. Wohlin, Using students as subjects – a comparative

study of students and professionals in lead-time impact assessment, J.
Empirical Softw. Eng. 5 (2000) 201–214.

[48] J. Verelst, The influence of the level of abstraction on the evolvability of
conceptual models of information systems, in: Proceedings of the
International Symposium on Empirical Software Engineering (ISESE’04),
2004, pp. 17–26.

[49] D.I.K. Sjøberg, J.E. Hannay, O. Hansen, V.B. Kampenes, A. Karahasanovic, N.
Liborg, A.C. Rekdal, A survey of controlled experiments in software
engineering, IEEE Transact. Softw. Eng. 31 (9) (2005) 733–753.

[50] D. Cohen, M. Lindvall, P. Costa, An introduction to agile methods, Adv. Comput.
62 (2004) 2–67.

[51] M. Petre, UML in practice, in: Proceedings of the 2013 International Conference
on Software Engineering (ICSE’2013), San Francisco, CA, USA, 2013, pp. 722–
731.

http://refhub.elsevier.com/S0950-5849(14)00131-1/h0115
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0120
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0120
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0120
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0125
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0125
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0130
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0130
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0130
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0135
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0135
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0135
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0140
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0140
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0140
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0140
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0140
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0140
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0140
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0145
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0145
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0145
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0145
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0150
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0150
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0155
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0155
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0155
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0160
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0160
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0170
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0170
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0170
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0185
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0185
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0185
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0190
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0190
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0190
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0205
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0205
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0205
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0215
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0215
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0215
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0215
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0220
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0220
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0220
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0225
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0225
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0225
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0235
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0235
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0235
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0245
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0245
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0245
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0250
http://refhub.elsevier.com/S0950-5849(14)00131-1/h0250

	Are Forward Designed or Reverse-Engineered UML diagrams more helpful for code maintenance?: A family of experiments
	1 Introduction
	2 Related work
	3 Description of experiment
	3.1 Goal
	3.2 Context selection
	3.3 Variable selection
	3.4 Hypotheses formulation
	3.5 Experimental design
	3.6 Experimental tasks
	3.7 Experimental procedure
	3.8 Analysis procedure
	3.9 Documentation and communication

	4 Results
	4.1 Descriptive statistics and exploratory analysis
	4.2 Influence of origin of diagram
	4.2.1 Testing maintenance effectiveness: MEffec (H1,0)
	4.2.2 Testing maintenance efficiency: MEffic (H2,0)
	4.2.3 Integrating the obtained results through meta-analysis

	4.3 Influence of Ability
	4.4 Post-experiment survey results
	4.5 Summary and discussion of the data analysis

	5 Implications of the study
	6 Threats to validity
	7 Conclusions and future work
	Acknowledgments
	References

