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Abstract

Variability models, feature diagrams ahead, have be-

come commonplace in the software product lines engi-

neering literature. Whereas ongoing research keeps im-

proving their expressiveness, formalisation and automation,

more experience reports on their usage in real projects are

needed. This paper describes some challenges encountered

during the re-engineering of PloneMeeting, an Open Source

software family, into a software product line. The main

challenging issues we could observe were (i) the ambigu-

ity originating from implicit information (missing defini-

tions of feature labels and unclear modelling viewpoint),

(ii) the necessity of representing spurious features, (iii) the

difficulty of making diagrams and constraints resistant to

change, and (iv) the risks of using feature attributes to rep-

resent large sets of subfeatures. Our study reveals the lim-

itations of current constructs, and calls for both language

and methodological improvements. It also suggests further

comparative evaluations of modelling alternatives.

1 Introduction

Feature diagram (FD) languages are a common means

to represent variability in Software Product Lines (SPL).

FDs come in various flavours, a large part of which have

been surveyed and formalized in [20]. FD languages have

also been compared theoretically, according to mathemati-

cal criteria [21, 11].

These results can be used by method engineers and lan-

guage designers for choosing the constructs to be included

in their custom FD languages, and for formalizing them

quickly. The results are also valuable to tool developers for

ensuring the correctness and efficiency of their reasoning

algorithms.

However, such criteria and results can certainly not an-

swer all questions about the appropriateness of current fea-

ture modelling techniques. For instance, although formal-

ized, expressively complete and having a host of efficient

algorithms at hand, a language might well turn out to be

unsuitable for a given modelling purpose. This can hap-

pen, e.g., because the language lacks appropriate constructs

to convey the intended meanings, because the diagrams

quickly become unreadable, or because insufficient method-

ological guidance is provided to the modeller [15].

These kinds of issues can only be answered empirically,

by confronting the modelling techniques to real usage situ-

ations. This is what the present paper has to offer, thereby

complementing the previous investigations. This research

appeared to us as a necessity also because, despite the avail-

ability of experience reports dealing with variability man-

agement in SPL (e.g., [23]), we found no thorough empir-

ical study focusing on the assessment of feature modelling

techniques. A possible reason for this is the risk of disclos-

ing strategic corporate information potentially contained in

actual FDs.

This situation drove us to look for a significant and

open case study allowing free dissemination of results in

the research community. These requirements were met

by PloneGov, an open source project developing eGovern-

ment applications [10] based on Plone [5]. More precisely,

we focus on PloneMeeting, a Plone-based family of prod-

ucts intended to support the management of meetings held

by local and regional authorities. The current activity in

which we and PloneMeeting developers cooperate is the re-

engineering of PloneMeeting’s configuration subsystem. In

pursuing this endeavour, it quickly became apparent that

both the developers and the researchers were missing a clear

and agreed view of the variability currently supported by the

existing software, what we call software variability (as op-

posed to product line (PL) variability [16]). We thus started

to elicit the software variability from the existing artefacts,

and reported some preliminary observations in [12]. In the



present paper, we focus on a set of challenges encountered

when applying FDs to model the previously elicited infor-

mation.

The rest of this paper is organised as follows. Sec. 2 will

recall the notion of software variability and the FD language

that we used. In Sec. 3, we will introduce PloneGov, Plone-

Meeting and the settings of our study. The four following

sections are each devoted to a challenge. Sec. 4 reveals the

ambiguity arising from implicit information (missing defi-

nitions of feature labels and unclear modelling viewpoint).

Sec. 5 shows the necessity and embarrassment of represent-

ing spurious features. Sec. 6 emphasises the difficulty of

making diagrams and constraints resistant to change. Sec. 7

highlights the risks of using feature attributes to represent

large sets of subfeatures. After the detailed account of

each challenge, Sec. 8 will summarize our contributions and

broaden the discussion by addressing the threats to valid-

ity. Sec. 9 will wrap-up the paper and announce our future

work.

2 Modelling Software Variability with Fea-

ture Diagrams

2.1 Software Variability

In the reported study, our goal is to model the software

variability of PloneMeeting. We do so to obtain a clear and

agreed picture of the capabilities of the existing assets be-

fore further ado. As advocated in our previous work [16],

we consider essential to distinguish between software and

PL variability.

Software variability refers to the “ability of a software

system or artifact to be efficiently extended, changed, cus-

tomized or configured for use in a particular context” [22].

This kind of variability is well known from the development

of single systems, and is thus not specific to SPL. As an ex-

ample, an abstract Java super-class allows different special-

izations to be used where the super-class is used.

PL variability [6, 19, 14], on the other hand, is specific

to SPL and describes the allowed variation between the sys-

tems that belong to a PL. Defining PL variability is an ex-

plicit decision of product management [14, 19]. As an ex-

ample, product management might have decided that the

mobile phones of their PL should either offer the GSM or

the UMTS protocol, but not both (although the existing as-

sets might well technically allow to have both at the same

time, which would be software variability).

In [16], the authors proposed to record PL and soft-

ware variability in separate models (e.g., FDs) and to in-

terrelate them. Equiped with formal syntax and semantics,

those models not only disambiguate the documentation of

variability, but are also amenable to automated analyses.

In the present paper though, we only focus on the chal-

lenges related to the modelling of the software variability

of PloneMeeting. Confronting PloneMeeting’s PL and soft-

ware variabilities is part of our future work.

2.2 The FD language of Czarnecki et al. [8]

FDs are a common means to model variability, be it PL

or software variability. For our study, we resorted to the

cardinality-based FD language proposed by Czarnecki et

al. [8]. This language was chosen because it was deemed

representative of the state of the art in FD languages: being

a popular notation, being expressively complete [21], us-

ing cardinality-based decomposition operators (which have

been shown to subsume the other traditional operators or,

and, xor. . . [21]), possessing a formal semantics as well as

advanced constructs like feature attributes, feature cloning

and references. It is important to emphasise that we do not

consider this paper as an assessment of this language in par-

ticular, but rather as an evaluation of the current state of the

art in feature modelling.

We assume familiarity of the reader with the modelling

language. Here, we simply recall some notational conven-

tions and terminology by referring to an example further

elaborated in the rest of the paper. Group cardinality (of-

ten simply called cardinality afterwards) is represented by

an interval of integers between the symbols ’<’ and ’>’. An

example is <1..1> appearing thrice in Fig. 5. Group car-

dinality indicates the minimum and maximum numbers of

features, from a specific group of subfeatures, that can ap-

pear in one configuration of the FD, given that their par-

ent feature is part of the configuration too. It should not

be confused with feature cardinality, e.g. [1..*], which

indicates how many times the same feature can appear in

one configuration given that its parent feature appears there

too. In this paper, we happen to only use default values of

feature cardinality: [0..1] is depicted by a hollow circle

on top of the feature, therefore called optional feature (e.g.,

Fallback in Fig. 5); [1..1] is depicted by a filled circle

topping the feature, thus called mandatory (e.g., Transla-

tions in Fig. 5). Other constructs will be introduced when

needed.

3 The PloneMeeting Case Study

PloneMeeting is part of PloneGov, an international Open

Source (OS) initiative promoting secure, collaborative, and

evolutive eGovernment web applications. PloneGov fos-

ters cooperative development of such applications to ben-

efit from economies of scale. PloneMeeting was initiated

by the Belgian government to offer advanced meeting man-

agement support to national (local and regional) authorities.

However, it has also been gaining attention from beyond



the Belgian borders, and is currently being tested in some

French, Spanish and North American towns. The following

subsections will introduce PloneGov, PloneMeeting as well

as our research objectives and method within this context.

3.1 The PloneGov initiative

PloneGov [1] is based on Zope and Plone [5]. Zope is

an OS application server for hosting content management

systems (CMS), intranets, portals, and custom applications.

Plone is a portal and CMS built on top of Zope.

PloneGov gathers around 55 European, American and

African public organizations. It consists of 17 projects with

more than 10 product releases [1]. Products are divided into

(1) citizen-oriented services, (2) government internal appli-

cations, of which PloneMeeting, and (3) general purpose

tools.

The worldwide scope of PloneGov yields many contexts

to deal with. Those differ in specific legal, social, politi-

cal and linguistic characteristics than influence the features

required for a given product.

3.2 The PloneMeeting product family

Although PloneMeeting would be called a product in

Plone jargon, PloneMeeting is actually a family of prod-

ucts (see Fig. 1) supporting the organisation, performance

and follow-up of official meetings held by local and re-

gional authorities. PloneMeeting is built on top of Plone

and thus reuses Plone software assets extensively. Its devel-

opment started in June 2007 and a working version is now

available on the PloneGov website1. Similarly to Plone-

Gov, PloneMeeting products differ in characteristics deter-

mined by the context of use. For example, the display

language (Dutch, French, English. . . ), the meeting man-

agement workflows, the recognized document formats, the

GUI’s look and feel. . . must adapt to local constraints.

Two sub-families of the PloneMeeting family – called

profiles in Plone – are PloneMeetingCommunes2 and EGW.

These profiles need to be further refined into configurations

– another Plone term – to allow the full specification of a

running instance, i.e., a family member. Fig. 1 sketches this

situation and suggests that variation points are likely to be

present at different levels, suggesting a non trivial variabil-

ity management and resolution process. The red rectangle

on the left-hand side gives an overview of the distribution

of stakeholders according to the targeted variability resolu-

tion stage. Four main classes of stakeholders were identi-

fied. The developers are those in charge of designing and

producing the application code. We distinguish Plone and

PloneMeeting developers. The system administrators are

1http://www.plonegov.org/products/plonemeeting
2A commune is a Belgian local (city or town) authority.

those in charge of configuring and maintaining the Plone-

Meeting websites, guided by domain experts. Users are the

civil servants using the websites to manage meetings.

There are three different products (a.k.a. family mem-

bers, a.k.a. Plone configurations) currently available in

PloneMeeting: Communal Council’s goal is to handle meet-

ings of the communal council; Communal College deals

with the meetings of the communal college; e-gw focuses

on the meetings of the Walloon government3.

3.3 Research question and method

The research question addressed in the reported case

study can be formulated as: What are the practical ob-

stacles encountered when applying state-of-the-art FD lan-

guages to the modelling of software variability of a real size

product line?

Considering the openness of the question, the fact that

it is insufficiently addressed by current research, and since

answering it imposes to operate in complex settings where

there is little control over variables, an exploratory case

study [18] appeared to be an appropriate approach.

As mentioned in the introduction, our study takes place

within a larger project in which we are assisting the Plone-

Meeting developers in re-engineering their configuration

system. Currently, PloneMeeting is configured through a

mix of many manual and software-assisted tasks performed

at various application levels (Zope, Plone, PloneMeeting,

browser. . . ), by different kinds of stakeholders and at dif-

ferent times. This process is judged too complex, too time-

consuming and error-prone (it is easy to make inconsistent

configuration choices). A recognized source of the problem

was that there is no overall view of the variability of the ap-

plication among the developers, which could be exploited

to generate a more reliable configurator. The task of inven-

torizing the software variability that the software assets are

currently capable of, has thus been given high priority by

the developers. This task involves (1) eliciting the informa-

tion and (2) documenting (i.e. modelling) it. The latter sub-

task is the focus of the present paper. The former is reported

in [12] and quickly summarized in the next paragraph.

The elicitation task started with meetings involving the

PloneMeeting developers and us, the researchers. We then

attended a demo session of the Belgian PloneGov products

from which we extracted a broad overview of the Plone-

Gov initiative. Attending the coding sessions allowed us

to better identify the different products that the PloneMeet-

ing developers are working on, and to extract some detailed

variability information. Extraction of this information was

complemented by the analysis of several PloneMeeting con-

figuration menus and files, as well as the project’s trac 4.

3Wallonia is one of the three territorial regions of Belgium.
4A trac is a web-based software project management and bug/issue
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Figure 1. Overview of PloneMeeting variability resolution levels

The elicitation requested an effort of one man-month, per-

formed by a junior researcher (the first author) between Oc-

tober and December 2007.

The modelling task started four weeks after the start of

the elicitation phase but largely overlapped with it. The

effort was of about one man-month. The mission of the

researcher was to use the language introduced in Sec. 2.2

in order to represent faithfully the elicited information. In

order to avoid a tool bias, there were no specific tools

imposed, just a generic diagramming tool (OmniGraffle).

Again, the performer of this task was the first author, who

kept track systematically of all the problems he encountered

during the modelling.

Several recurring challenges quickly surfaced. In the fol-

lowing sections, we characterise these challenges in detail.

Each of them is illustrated through a representative situa-

tion in which it occurred: we will first explain the situation

to be modelled independently from the modelling notation;

secondly, we will describe the tentative model(s) made with

FDs, the problems we ran into and discuss the pros and cons

of the various modelling alternatives; finally, we will draw

the lessons and emphasize open research issues. The order

in which the challenges appear in the text is neither repre-

sentative of their importance, nor of the sequence in which

we encountered them. They are presented so as to facilitate

comprehension. However, only the challenges that were

deemed the most important in this initial modelling phase

are reported. Other challenges, some of which might gain

tracking system. The PloneMeeting trac is available at http://dev.

communesplone.org/trac/report/120

importance as the case study progresses, are briefly men-

tioned in sec. 8. There, we also examine the threats to the

validity.

4 Challenge 1: implicit modelling viewpoint

4.1 Situation to be modelled

The availability of Plone in many languages is dealt with

by the Plone internationalisation (i18n) initiative, a result of

which is Plone’s built-in translation management service,

the so-called PlacelessTranslationService (PTS) [5]. It pro-

vides a dynamic translation mechanism independent from

string locations in web pages. Translations are stored in

key/value pairs. A key is a label in the code identifying a

translatable string; the value is its translation.

The developers are in charge of providing the translation

files. The system administrators and the users are those able

to select the language to be used. Physically speaking, all

the Plone translation files are copied at each installation, or

website instance, as shown in Fig. 2. However, at runtime,

the file actually in use may vary. The files appearing with a

grey background in Fig. 2, viz. Plone-en.po in installa-

tion 1 and Plone-fr.po in installation 2, are those used

at a given time t of the execution.

4.2 Issues faced when applying FDs

When starting to model the software variability of the

PTS, we first drew a diagram such as the one in Fig. 3(a),



Plone language files

Plone-en.po

Plone-fr.po

Plone-ja.po

...

Installation 1

Plone-en.po

Plone-fr.po

Plone-ja.po

...

Installation 2

Plone-en.po

Plone-fr.po

Plone-ja.po

...

Figure 2. Presence and usage of files in two

Plone installations at execution time t

intuitively interpreting features fr, en, ja5 as denoting the

presence of files Plone-fr.po, Plone-en.po and

Plone-ja.po, respectively. (The reader should ignore

features Fallback and Code Labels for the moment). How-

ever, as it appears, Fig. 3(a) contains no variability (all fea-

tures are mandatory) and therefore fails to represent impor-

tant information that was elicited: the fact that only one file

can be used at a time6.

As a consequence, we drew a second diagram, such as

the one in Fig. 3(b). (The feature Unavailable Translation

should be ignored for the moment). This one interprets

features fr, en, ja as denoting the usage of files at a given

time and constrains them with a feature group cardinality of

<1..1>, faithfully representing the elicited information.

So, although it took a second try, the modelling of the sit-

uation was no problem in the end. However, the a posteriori

interpretation of the diagrams by the developers appeared to

be a problem, as there was no indication of the way to in-

terpret the features in the diagram. This might turn out to

be a very annoying issue when we consider that the devel-

opers will have to build a configurator that implements, or

interprets, the constraints found in the diagram. Here, with-

out the indication of the meaning of the features, there is no

way for the developers, or the interpreter, to determine the

time at which the resolution of variability must take place,

that is, the binding time [22].

4.3 Lessons learned and perspectives

A first lesson that we draw from this challenge is that

an explicit indication of the modelling perspective, or view-

point, (here, presence vs. usage of files) might be a precious

indication for interpreting an FD. In this case, the perspec-

tives happened to correspond to two different binding times

(design time and runtime, respectively), but other perspec-

5Here, we assume a small set of languages (French, English and

Japanese) for simplicity.
6This constraint is actually not true in all contexts of use of Plone, but

it is in the one we considered.

Plone
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enfr ja

(a) File presence at design time

Plone

i18n

Fallback Translations

Code 
labels

enfr ja

<1..1>

Unavailable 
translation

(b) File usage at runtime

Figure 3. Plone i18n variability models

tives might be possible. Binding time has been discussed as

a modelling perspective in [7].

In addition to the a posteriori indication of the perspec-

tive, it would also be interesting to have some sort of a pri-

ori list of recurring perspectives that it might be worth to

consider, acting as a checklist for the elicitation and mod-

elling activities.

Another methodological suggestion is to provide defini-

tions for all feature labels used in FDs. This recommenda-

tion, although already advocated in feature modelling [13]

and other modelling domains [25], is often overlooked in

practice. Maybe a lighter, or complementary suggestion,

relevant when dealing with software variability, is to use

typed traceability links between the features and the as-

sets that they are about. In our case, link types such as

<possesses> (for indicating presence) or <uses> (for

usage) could help disambiguate the meaning of the features

wrt the files they point to.

Finally, we should note that solutions have been sug-

gested for the specific issue of discriminating between dif-

ferent binding times within the same FD [13, 24]. Surpris-

ingly, we did not encounter a situation requiring this in our

case study (yet), but we could well imagine a runtime va-

riability that only becomes relevant depending on some de-

sign time choice. This might be the case, for example, if
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together

i18n was a design time option. In such a situation, an FD

where each variation point is tagged with a binding time

(see Fig. 4) would become valuable. However, the binding

time construct currently possesses no formal semantics, and

thus calls for an adequate formalization that will substan-

tially change the one presented in [20]. We also encourage

a more accurate comparison of the pros and cons of two

approaches: putting different binding times in different dia-

grams vs. grouping them in the same diagram.

5 Challenge 2: “unavailable” features

5.1 Situation to be modelled

The so far eluded Plone i18n “fallback” mechanism [5]

posed some modelling problems too. To understand how

fallback works, we need to clarify the way the display lan-

guage of a running Plone instance is selected. The language

is actually determined by the PTS according to the language

of the web browser. For instance, if the browser is set to fr

(French), the PTS will choose fr as display language. How-

ever, since the PTS only knows a limited set of languages,

the browser language might well not be in the PTS’s list.

This is where fallback intervenes: (c1) if fallback is en-

abled, and the selected language is unavailable, e.g. wal

(Walloon), use the default, typically en (English); (c2) if

fallback is enabled, and the selected language is available,

e.g. fr, use it; (c3) if fallback is disabled, and the selected

language is available, use it; and (c4) if fallback is disabled,

and the selected language is unavailable, use code labels.

Fallback can be enabled or disabled by the system adminis-

trator via the Zope Management Interface (ZMI)7.

7The ZMI is a management and development environment through

which Zope is controled, Zope objects are manipulated, and web appli-

cations are developed.

5.2 Issues faced when applying FDs

To model the above situation, we started from the FD

in Fig. 3(b) which, at the time, did not have features Fall-

back, Code labels and Unavailable translation, yet. We first

added Fallback, an optional runtime feature, and Code la-

bels. The fact that only one language can be displayed at

a time is easily modelled by the <1..1> group cardinal-

ity. However, for representing constraints c1-c4, we had to

resort to other means.

We first tried with graphical crosscutting constraints

(<requires> and <excludes>) and their textual

equivalent, Composition Rules (CR) [13]. However, the

diagrams (resp. formulae) quickly became cluttered and,

most importantly, were insufficient to convey the meaning

of the constraints. This was no surprise, as the expressive

weakness of the aforementioned constraint languages has

already been pointed out in the literature [3, 21].

Following [3], we thus opted for propositional logic for-

mulae. This turned out to meet our modelling needs, but

required the addition of a somewhat spurious feature, Un-

available translation (UT, for short), see Fig. 3(b). Since we

could not realistically imagine to have a feature for each un-

available language, the tentative choice of such a language

by the browser was represented by UT. Then, we could add

the following constraints:

(φ1) UT ∧ Fallback ⇒ en

(φ2) UT ∧ ¬Fallback ⇒ Code labels

(φ3) (fr ∨ ja) ⇒ ¬UT

φ1 accurately represents c1, φ2 represents c4, and φ3

covers both c2 and c3.

5.3 Lessons learned and perspectives

A first lesson drawn from this example is the confirma-

tion that crosscutting constraints and CR are not sufficient

to model some real situations accurately.

Most important is the observation that although a more

powerful constraint language, such as propositional logic,

can overcome this issue, it still forces the modeller to harm

the “naturalness” of the FD by adding a spurious feature.

We call this feature spurious because it represents a set of

features (translation languages) that are actually not offered

by current software assets, which is arguably paradoxical

when modelling the provided software variability. This also

reinforces the importance of carefully specifying the mean-

ing of features in definitions accompanying the FD (see

Sec. 4). In some cases, it might also be concluded that there

is no way to model the situation in a reasonably natural way

based on FDs. For example, when dynamic aspects are too

complex, it might be more appropriate to turn to behavioural

modelling techniques, such as UML State Diagrams.



Situations like this one appeared in several other parts

of our case study, suggesting the emergence of some sort

of pattern. We think that it would be useful to document

such patterns and the way to model them in methodological

guidelines for FD modelling.

6 Challenge 3: evolving variability

6.1 Situation to be modelled

The present challenge originated from the need to up-

date previously modelled variability information. This hap-

pened, for example, as new translation files were made

available. Therefore, the information contained in the FD

of Fig. 3(b) and the documentation of constraints c1-c4 had

to be adapted. As these kinds of changes actually take

place regularly (especially in OS projects where new assets

are continuously uploaded and local installations updated)

models must be easily evolvable. In our case, we looked for

a resilient modelling of the runtime fallback mechanism.

6.2 Issues faced when applying FDs

We started from the FD of Fig. 3(b) and its side con-

straints φ1, φ2 and φ3. Updating the FD was relatively

straightforward, so we do not discuss it here (but return to

this issue in Sec.7). For now, we only focus on the con-

straints. If en and Code labels remain the default choices

(resp. with fallback enabled and disabled), φ1 and φ2

do not have to change. However, φ3 has to. For exam-

ple, if Spanish (es) and Italian (it) are added, it becomes

(fr ∨ ja ∨ es ∨ it) ⇒ ¬UT .

Manual change of this formula (and possibly others)

each time a new translation file is added (or removed), is

a cumbersome process. It increases the risk of inconsis-

tency between the FD and the side constraints, and among

the constraints, especially if there are many translation lan-

guages. So, we looked for a way to remove φ3, or make its

formulation more evolvable.

We could make φ3 disappear through a

refactoring of Fig. 3(b) into Fig. 5. The lat-

ter FD adds two intermediate features under

Translations, namely DefaultTranslations (DT )

and NonDefaultTranslations (NDT ). Mutual exclu-

sion between the translation languages is now guaranteed

by three (instead of one) <1..1> cardinalities, and

although φ1 and φ2 remain the same, φ3 is now replaced

by an <excludes> link between UT and NDT .

Alternatively, it appeared possible to keep Fig. 3(b) as is,

and only rewrite φ3 so that it can be changed more easily, at

least with respect to the addition of non default languages:

(φ′

3
) (Translations ∧ ¬(en ∨ Code labels)) ⇒ ¬UT

Plone

i18n

Fallback Translations

Code 
labels

enfr ja

<1..1>

Unavailable 
translation

NDT DT

it es

<1..1> <1..1>

<EXCLUDES>

Figure 5. Refactored Plone i18n runtime FD

6.3 Lessons learned and perspectives

The first solution (the refactoring of the FD) reveals the

existence of a trade-off between the simplicity (in size and

structure) of an FD, on the one hand, and its evolvability

on the other. This is an issue that certainly deserves further

investigation, which, in the end, should result in modelling

guidelines indicating when it is worth complicating the FD

and when it is not.

The second solution (rewriting the formulae) seems sim-

pler and less costly, but we need further empirical evidence

to check if it will always be the best choice.

In doubt, we also envisaged an alternative solution in

the form of language enhancements that would make model

refactorings such as the above unnecessary. The sugges-

tion is to allow gathering features of the FD into “logical

sets”, irrespective of where they appear in the FD (thereby

not affecting the decomposition structure). If such sets were

given names, and if we extend propositional formulae with

some kind of macro constructs, we might end up with for-

mulae that are more resistant to continuous variability evo-

lution.

In our example, leaving Fig. 3(b) as is, we could name

NDT the set of non default language translation features,

and define it as: NDT = {fr, ja, es, it}. Then, we could

replace φ3 or φ′

3
with a formula like

(φ′′

3
)

∨

f∈NDT

f ⇒ ¬UT

where
∨

is a macro whose expansion concatenates ∨ oper-

ators and their operands.

This proposal is by no means a complete nor definitive

solution. Firstly, the macro-enhanced constraint language

would have to be defined precisely. Secondly, the logical

sets’ definitions would still have to be maintained manually.



This is however probably less complex and error-prone than

directly maintaining all the concerned constraints, or refac-

toring the FD. Again, a more thorough investigation of the

pros and cons of the modelling alternatives is an interesting

topic for future research. The use of OCL path expressions,

as suggested in [9], is also a possible alternative.

7 Challenge 4: large sets of subfeatures

7.1 Situation to be modelled

In the previous descriptions of i18n, the number of lan-

guages has been voluntarily restricted for readability pur-

poses. However, Plone actually generates content in more

than 50 languages8.

7.2 Issues faced when applying FDs

Given the simplified settings (3 languages), we could af-

ford to model all languages extensively in Fig. 3(b): one

language becomes one feature. However, for 50+ lan-

guages, we considered replacing this option (see Fig. 6(a))

by other alternatives (Fig. 6(b) and Fig. 6(c)).

Both alternatives follow a suggestion found in [8] and

[4] to replace subfeatures by attribute values of the super-

feature, in this case Translations. The type of the at-

tribute appears between parentheses below the superfea-

ture’s name. This allowed to reduce the number of subfea-

tures to one, thereby significantly downsizing the FD. How-

ever, by using an attribute of type String and not further

constraining it, the first alternative (Fig. 6(b)) was not accu-

rate wrt the modelled situation: an explicit list of the sup-

ported languages was deemed an important information on

the current software capabilities; it should be documented

at this stage to avoid forgetting about it later.

With the second alternative (Fig. 6(c)), we solved this is-

sue by using an enumerated type, here called Language.

In this case, the informational content is the same as in

Fig. 6(a). Nevertheless, some adaptation of the constraints

φ1, φ2 and φ′

3
was needed (Tr stands for Translations):

(φ1) UT ∧ Fallback ⇒ Tr = en

(φ2) UT ∧ ¬Fallback ⇒ Tr = Code labels

(φ′

3
) (Tr 6= en ∧ Tr 6= Code labels) ⇒ ¬UT

7.3 Lessons learned and perspectives

A first observation is that although feature attributes def-

initely allow to reduce the size of FDs, resorting to them too

8Whose list is available at http://plone.org/development/

teams/i18n/existing-translations/?searchterm=

plone\%20available\%20translation

enfr ja

Translations

...

<1..1>

(a) Features

Translations
(String)

Language={fr, en, ..., ja}

(b) Attribute of

generic type

Translations
(Language)

Language={fr, en, ..., ja}

Language={fr, en, ..., ja}

(c) Attribute of

enumerated type

Figure 6. Modelling many subfeatures in FDs

hastily (e.g., using “open” types like String) could easily

lead to loss of information with potentially harmful conse-

quences in later development stages.

Reconsidering evolvability (the previous challenge), we

could also imagine a solution that combines arbitrary “log-

ical” (i.e., decomposition-independent) feature sets (see

Sec. 6.3) with typed feature attributes using type construc-

tors such as ∪, ∩, ×. . . For example, in our case, we could

define Language = DT ∪ NDT with NDT and DT in

turn defined as NDT = {fr, ja, es, it, . . .} and DT =
{en, Code labels}. The formalisation and applicability of

this suggestion remains a topic for future work, but we can

already observe that it would combine evolvability and con-

cision, the latter remaining a concern in Fig. 5.

Finally, we should also keep in mind that attributes can

only replace terminal (leaf) features. Different or adapted

solutions, e.g., using FD references [9], should be investi-

gated for large sets of subfeatures that include non terminal

ones.

8 Discussion

Based on the issues encountered during the modelling of

PloneMeeting’s software variability, the previous sections

called for a number of language enhancements, method-

ological guidelines and more thorough comparative evalua-

tions of modelling alternatives. However, the relevance of

those research directions to the field of feature modelling

in general has to be confronted with the peculiarities of our

study. As recommended by best practice in case study re-

search [18], we thus now discuss the threats to validity.

The relative lack of experience of the appointed re-

searcher is certainly such a threat. At the start of the study,

he was a first year PhD student, with a solid background in

Software Engineering, but no particular experience in fea-

ture modelling. So, firstly, as experience can compensate

for the lack of explicit methodological guidelines, one could

argue that the latter issue is overrated here. However, we

believe that a guide of best practice for feature modelling

would be a valuable asset for practitioners since (1) new-

comers arrive continually and (2) such a guide is likely to



harmonize modelling styles among experienced modellers

too, thereby preventing interpretation errors. Secondly, the

lack of experience of the researcher might have lead us to

focus on issues that an experienced modeller would have

solved seamlessly. This possible bias might be reinforced

by the relatively short time (1 man-month) spent on the case

study. The modelling of PloneMeeting’s variability is not

over, and further work might reveal new challenges or lead

us to reconsider the importance given to the previous ones.

For instance, a challenge we only touched at, and whose

importance is likely to grow as we progress, is model scala-

bility. As we have seen, a construct like feature attributes, or

others like feature cloning or references [8], help master the

size of the produced FDs to some extent. For the future of

our case study, we anticipate that readability, intelligibility

and evolvability will become crucial. These issues are prob-

ably not only to be solved by language and method improve-

ments, but also by tool improvements, most notably smarter

visualization and navigation [17]. Hence, our current usage

of a general purpose diagramming tool might have to be re-

considered in the rest of the study, to help identify possible

improvements at this level too.

Another peculiarity of our settings is the focus on mod-

elling software variability, vs. PL variability (see Sec. 2.1).

Even though both can be supported by FDs, the former

is about representing some objective reality the develop-

ers deal with (the variability of the current software assets),

whereas the second is about documenting more subjective

information (decisions) probably still under debate within

product management. Therefore, in the second case, the

modelling is more likely to influence the represented infor-

mation as much as it is influenced by it [15]. The differences

in nature between the two variabilities, in the modelling pro-

cess they imply and in the types of stakeholders they in-

volve, might well justify different modelling constructs and

guidelines, as suggested in [19]. The observations reported

in this paper, which only concerns the modelling of soft-

ware variability, should thus not be generalised too hastily

to other usages of FDs.

Also specific to our experiment is the OS context. Firstly,

OS blurs the boundaries between developers, users and

product managers. This might actually attenuate the afore-

mentioned argument that our observations could be biased

by the kinds of stakeholders involved in software variability

modelling. Maybe this could even extend the relevance of

these observations to PL variability modelling. But OS has

other characteristics, among which the continuous contri-

bution of software assets by the community of developers.

One of the challenges was directly related to this issue (see

Sec. 6), hence the question of its generalisation to other con-

texts. In our opinion, the origin of this challenge resides in

the quick and constant evolution of software artifacts, which

is by no means specific to OS.

A final validity threat we discuss is the possible bias in-

troduced by the usage of a particular FD language [8]. As

we indicated in Sec. 2.2, we used it mainly because of its

observed popularity in the research literature and because it

appeared to us as representative of current state of the art,

considering the richness of its constructs and its formaliza-

tion. However, doing this, we might have overlooked inter-

esting features of other languages. To alleviate this bias, re-

search efforts could be devoted to model the same problems

we did, but with other languages. This will open the way

for an empirical comparative evaluation of FD languages,

an endeavour that has been quite successful in other appli-

cation domains of formal methods [2].

9 Conclusion

In this paper, we reported on several challenges en-

countered during the modelling of the software variability

of PloneMeeting, an Open Source software family, with

a state-of-the-art feature modelling language. The chal-

lenges were illustrated with representative samples of re-

current modelling problems we faced. From the difficulties

we experienced and the modelling alternatives we tried, we

ended up suggesting language and method improvements

as well as more thorough comparative evaluations of mod-

elling notations and techniques. These contributions com-

plement previous work on the formalisation, and more the-

oretical comparative evaluation, of feature modelling tech-

niques; our ultimate goal being the progress of this field. To

avoid overgeneralisation of our conclusions, we eventually

discussed the main threats to validity.

Obviously, the story does not end here. The suggested

language and method improvements need to be performed

and better evaluated; the suggested comparative evaluations

as well. The PloneMeeting case study itself must be pur-

sued: further modelling of the software variability is under-

way, and will be followed by the modelling of product line

variability and the evaluation of an approach to automati-

cally cross-check both kinds of variability. Further research

might also include comparing feature modelling with other

variability modelling paradigms such as decision models.
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