FaMa-OVM: A Tool for the Automated Analysis of OVMs

Fabricia Roos-Frantz, José A. Galindo, David Benavides and Antonio Ruiz-Cortés
University of Seville
41012 Seville, Spain
{fabriciaroos,jagalindo,benavides,aruiz}@us.es

ABSTRACT

Orthogonal Variability Model (OVM) is a modelling lan-
guage for representing variability in Software Product Line
Engineering. The automated analysis of OVMs is defined as
the computer-aided extraction of information from such
models. In this paper, we present FaMa-OVM, which is a pi-
oneer tool for the automated analysis of OVMs. FaMa-OVM
is easy to extend or integrate in other tools. It has been de-
veloped as part of the FaMa ecosystem enabling the benefits
coming from other tools of that ecosystem as FaMaFW and
BeTTy.

Keywords

Software Products Lines, OVMSs, Tools

1.INTRODUCTION

Variability modelling is an important task in Software
Product Line Engineering (SPLE). There are many kinds of
models used to represent such variability [3]. One of them
is the Orthogonal Variability Model (OVM) [7], which fo-
cuses on separating the representation of variability from the
representation of the various SPLE artefacts.

The configuration of a product is done by selecting desired
and valid options in the variability model during application
engineering. For example, in a mobile phone product line, an
option could be the selection of the screen resolution, which
can be basic or high. This option may demand a constraint to
ensure that the products support only one screen reso-lution
simultaneously. In the software product line commu-nity, it is
well-known that such variability in product lines is

increasing [1, 5, 11]. Therefore, variability models may have
thousands of options, and these options may have complex
dependencies among them. That makes the management
of such models practically impossible without an automated
tool support; their manual analysis is a difficult and error-
prone task.

In addition, the specification of variability can be ex-
tended with measurable attributes (e.g., CPU and mem-
ory consumption) and constraints on these attributes (e.g.,
memory consumption should be in a range of values) in or-
der to express some properties about different products [2].
For example, in cases in which there are limitations of re-
sources such as memory capacity and CPU time, the deriva-
tion of products that does not satisfy those conditions must
be avoided. That fact makes the manual analysis more dif-
ficult, leading to a need for automation.

The automated analysis of variability models is an active
research topic that has received the attention of many re-
searchers during the last twenty years. It can be defined
as the computer-aided extraction of information from vari-
ability models [2]. Some examples of analysis on variability
models are: checking whether a configuration is valid, check-
ing whether a model is void, etc [2]. Most of the research in
this field has been focused on feature models. There are a
number of approaches providing automated support for their
analysis [2]. They use different logical paradigm or formal-
ism (e.g. Description logic, Propositional logic, Constraint
programming) and most of them use BDD', SAT? or CSP?
off-the-shelf solvers to automate the analysis.

The existence of other variability models is naturally lead-
ing to the need for new techniques and tools to support their
automated analysis as well. To the best of our knowledge,
only Metzger et al. [6] and we [8] have explored the au-
tomated analysis of OVM. In [6], the authors propose an
indirect way to automatically analyze OVMs, i.e. by means
of the transformation of OVM into VFDT* and in doing so,
they reuse the semantics of analysis operations on VFD™.
In order to automate the analysis they map the analysis op-
erations to the boolean satisfiability problem SAT [4] and
use the solver SAT4j. In [8], we proposed an approach to
enrich OVMs with attributes and then used Choco solver to
automate the analysis of the enriched models.

In this paper, we present FaMa-OVM, which is a tool for

! JavaBDD solver, http://javabdd.sourceforge.net
2SAT4j http://www.satdj.org
3Constraint Satisfaction Problem www.4c.ucc.ie/

“Varied Feature Diagram (VFDT) is a formal “back-end”
language used to define semantics and automating analysis

Mandatory Variation Point
(it must always be bound)

Optional Variation Point
(It may or may not be bound)

Variant

Mandatory variability dependency
(the variant must be bound whenever
its parent VP is bound)

------------ Optional variability dependency
(the variant may or may not be bound
whenever its parent VP is bound)

Alternative variability dependency
(the cardinality determines
.| how many variants of the group

.| can be bound)

[min..max]

Requires constraint dependency
(the selection of a specific element
requires the selection of another one)

Excludes constraint dependency
(the selection of a specific element
forbid the selection of another one)

Sooooes

Figure 1: OVM graphical notation

the automated analysis of OVMs. The main advantage of
FaMa-OVM is that it is developed based on a framework
devised to facilitate the development of tools for the anal-
ysis of variability models. Therefore, it is easy to extend
and integrate into other tools. FaMa-OVM provides sup-
port for the analysis of OVMs using three different logical
paradigms: description logic, propositional logic, and con-
straint programming. Our tool also supports the analysis of
OVMs with attributes, as proposed in [8].

The remainder of this paper continues as follows. Sec-
tion 2 presents an overview of the OVM language with and
without attributes. Section 3 shows the architecture of the
FaMa-OVM tool, its capabilities, and its extension points; it
also describes the analysis operations supported by our tool,
and presents a user-oriented scenario, and finally, Section 4
presents concluding remarks.

2. BACKGROUND

OVM is a modelling language proposed to define the vari-
ability of a software product lines [7]. An OVM is composed
of two main elements: variation points (VPs) and variants
(Vs). A variation point documents what can vary within
artefacts of the product line, i.e., where differences exist in
the final software product, and are chosen by the customer or
engineer of the software product line. For instance, products
may differ with respect to operating systems they support,
with respect to whether they provide access to the inter-
net or not, and so on. A variant is related to a variation
point and documents how such variation point can vary.
For instance, products may come with two different oper-
ating systems. In summary, an OVM provides an abstract
representation of all the variations of the product line, which
are determined by all the possible combinations of variation
points and variants in the OVM.

Figure 1 shows an example of a graphical notation for
OVM. The meaning of each graphical element and their re-
lationships is described on the right hand side.

All variation points are related to at least one variant
and each variant is related to one variation point. Variation
points can be either optional or mandatory. A mandatory
variation point must always be bound in all the products

()

(Operations) g

(&)

Valid Products Variability Dead g

©

ValidProd #Prod Commonality L
OWM XML textual

=

Metamodel Readers/Writers 8

©

=

Choco SAT4j JaCoP JavaBDD e

Reasoners

Figure 2: FaMa-OVM an extension of FaMa FW

of the product line. An optional variation point can be op-
tionally bound. Binding a variation point means making a
decision about its variants children. The relationships be-
tween the elements of OVM can be of two types:

e Variability dependencies. They define the rules
that constrain the possible options (variants) to a vari-
ation point. Variability dependencies can be of three
types, namely: mandatory, optional, and alternative.
The cardinality in the alternative relationship deter-
mines how many variants can be chosen simultane-
ously.

e Constraint dependencies. They define possible de-
pendencies and incompatibilities amongst variant se-
lections. They are of two forms: ezcludes and requires.

Recently, we have proposed an approach to associate at-
tributes with OVMs [8]. In that work we defined an attribute
as a measurable property of an artefact. We considered only
those properties that can be quantified and technically de-
fined. For example, the version of a system.

As defined in [8], an attribute consists of a name, a do-
main, a value, a nullValue, and a unit. Name denotes the
name of the attribute which does not need to be unique. Do-
main represents the range of values that the attribute may
hold such as Reals, Integers, and any range (e.g. [1...512]);
Value denotes the attribute value which will depend on the
concrete type of attribute. NullValue denotes the value that
must be taken by the attribute when the variant with which
the attribute is related is not selected. Unit denotes a de-
terminate quantity such as metres, currency and kilobytes,
adopted as a standard for measurement.

3. THE FaMa-OVM TOOL

FaMa-OVM has been built on top of FaMa FW [10], which
is an open source Java framework originally designed for
the automated analysis of feature models. In its origins,
FaMa FW was designed to support different sorts of feature
models but recently it has evolved to support different kinds
of variability models and variability description languages.

FaMa FW provides a number of extension points to plug
in new artefacts, such as metamodels, readers/writers and

reasoners. Figure 2 shows an overview of FaMa-OVM arte-
facts. In the following, we report on those artefacts we have
plugged in:

e The OVM metamodel describes the different OVM el-
ements, and the rules that constraint the combination
of those elements. Furthermore, it describes the at-
tributes and their relationship with elements in the
OVM, as well as the constraints on attributes.

e The OVM Readers/writers allows FaMa-OVM to be
capable to store/extract the information present in the
metamodel as a textual format.

e The OVM reasoner enables a specific solver for the
analysis. For the analysis of OVM without attributes,
we used three different solvers: SAT4j, JavaBDD and
Choco solvers. But, for the analysis of OVM with at-
tributes we used Choco solver. That solver enables
working with numerical values, such as integers, which
allows to deal with attributes, enabling it to maximize
or minimize values.

FaMa-OVM is part of the FaMa ecosystem, once that it
was built using the FaMa FW. That fact makes easy to ex-
tend or integrate FaMa-OVM into other tools, prototypes or
proposals that have been done for the FaMa FM (the feature
model version). For instance, we developed a metamorphic
generator extending the BeTTy tool [9] which allows us to
perform functional testing over our new tool.

BeTTy is an extensible and highly configurable framework
supporting BEnchmarking and TestTing on the analYses of
feature models, we extended it easily to support also OVMs.
BeT Ty offers a set of different generators for feature models,
but having also a set of abstract classes that allows to extend
it to support others variability description approaches.

3.1 Supported analysis operations

FaMa-OVM provides a number of operations to analyse a
model without modifying it. Each operation takes an OVM
as input and returns a response as result. More details about
analysis operations can be found in [2]. Next, we summarize
some of the analysis operations provided by FaMa-OVM:

Operations for non-attributed OVMs:

e Void OVM: Checks whether an OVM is void or not. An
OVM is void when it does not represent any variation.

e Variations: Takes as input an OVM model and returns
all the variations represented by the input model.

e Valid Configuration: Takes an OVM and a configuration
(set of variants and/or variation points) as input and re-
turns a value (true or false) informing whether the input
configuration is valid to such OVM or not.

e Filter: It takes as input an OVM and a configuration and
returns the set of variations including the input configu-
ration that can be derived from the model.

In addition to non-attributed operations that also can be
performing when using attributes, FaMa-OVM also offers a
bunch of operations for attributed models only. Next, we
describe two of them.

Operations for attributed Orthogonal Models:

e Optimal variation: The optimal variation is the variation
that satisfies all the constraints imposed by the model and

Attribute-based Model

name = cost

domain = Real

value = Windows.cost + Android.cost
nullValue = 0

unit = Monetary unit

- name = cost name = cost
N v domain = Real
Windows Android value =0 value = 250
o nullValue = 0 nullValue = 0

unit = Monetary unit unit = Monetary unit
v

|

|

I domain = Real
i

|

|

Figure 3: OVM associated with attributes

also minimises or maximises a given objective function.
When associating OVM with attributes, we are able to
ask for an optimal variation, since the objective function
takes into account values of attributes.

e Optimal variation with attribute condition: The engineer
of a product line may want to verify which is the opti-
mal variation that satisfies some attribute condition and
a desired partial configuration.

3.2 An user-oriented scenario

Variability documented in the OVM may be not enough
to guarantee the success of a product. Software engineers
should be able to realise the impact of their choices on the
attributes, and thus, decisions about the most suitable prod-
uct to be built should take into account those attributes. To
demonstrate the relevance and usefulness of the proposed as-
sociation of OVM with attributes and the automation of its
analysis, we present the following user-oriented scenario.

An engineer of a mobile phone product line wants to know
what is the impact of her/his choice on the cost of a prod-
uct. Depending on the selected operating system, costs of
a product may change. Figure 3 shows how we represent
this variability using OVM and attributes. Products from
this product line can have Windows or Android operating
system. Furthermore, there are two basic attributes: 1) cost,
related to Windows, and i) cost, related to Android (basic
attributes are depicted in grey). These attributes determine
that each operating system has a different system cost. In
addition, there is one derived attribute: cost, related to vari-
ation point OS. This derived attribute expresses the system
cost regarding the type of operating system selected, and it
is the sum of costs of basic attributes, namely Windows.cost
and Android.cost. Note that we textually represent each at-
tribute by relating the variability element and the attribute
with the form <wariability-element.attribute>. For exam-
ple, Windows.cost defines the relationship between variant
Windows and attribute cost.

Suppose that the engineer wants to find the variation with
the lowest system cost. How to find this answer using FaMa-
OVM? First, the OVM and the attributes are specified using
the FaMaOVM textual format, which is shown in Figure 4.

The textual format consists of four main parts, namely:
1) Relationships, specifying the variability dependencies be-
tween variation points and variants; i) Attributes, speci-
fying basic and derived attributes; iii) Global Attributes,
specifying global attributes, and iv) Constraints, specifying
excludes and requires relationships, and domain constraints.
Attributes are defined in the form of <name>:<domain>, <value
>,<nullValue>; where lines are finished with semicolon, and

N o U A W N e

10
11

%Relationships

0S : [1,1]{Windows Android};
%Attributes

Windows.cost: Integer[1 to 500], 250, 0;
Android.cost: Integer[1 to 500], 0,0;

0S.cost: Integer[1 to 1000], Windows.cost + Android.

ceBBg , ©3
%Global Attributes

%Constraints

Figure 4: OVM and attributes in textual format

the terms are separated by commas. When the value of an
attribute is a function, a semicolon after <value> is used.

After the input model has been specified in textual format,
the FaMa-OVM tool takes this as input, and thus, using a
CSP reasoner, analyses it to find the optimal variation. As
a result, FaMa-OVM finds that the lowest system cost is
the one in which Android is selected, since the total cost of
the OS is the sum of Android.cost, which is zero when An-
droid is selected (represented by value), and windows.cost,
which is zero when windows is not selected (represented by
nullValue).

Note that, in this scenario, the problem seems to be sim-
ple to be solved, however, when there are many variation
points and relationships amongst variability and attributes
are more complex, such analysis is practically impossible to
be done manually. Therefore, finding the optimal solution,
as opposed to any possible solution, would be helpful for
making attribute-aware decisions.

4. CONCLUSIONS AND FUTURE WORK

Although the automated analysis of OVMs has been ex-
plored by Metzger et al.[6], they do not offer a tool. FaMa-
OVM is the first tool provided to automate such analysis
and it is based on a framework for the analysis of feature
models, which is a research area with more know-how. We
realised that the framework simplified the development of
our tool, we did not have to start from scratch.

We summarize the benefits of FaMa-OVM:

e Tool support for OVM. The users of OVMs can easily an-
alyze their OVMs by means of a simple public interface,
just needing to entry with the OVM (sometimes with some
more data, it depends on the operation) and to select the
operation to be answered by the tool.

o Multiple Reasoners: FaMa-OVM integrates multiple off
the-shelf solvers enabling the analysis of OVMs using three
different logical paradigms: propositional logic, descrip-
tion logic, and constraint programming.

e FEuxtensible tool: As FaMa-OVM is an extension of FaMa
FM, it offers the same advantages as the framework, in
particular ease of extending, enabling the analysis of OVM
and integration with other the tools that are part of the
FaMa ecosystem.

e Fasy to integrate and configure: FaMa-OVM is easy to
integrate with other tools, due to its simple front-end Java
interface, and easy to configure, since its configuration is
done by means of a unique XML file. For example, it can
be easily integrated in the VarMod-Editor®, enriching the

Psee http://www.sse.uni-due.de/varmod

editor with analysis support.

We are currently working to identify new analysis oper-
ations that may help to product line engineers when using
OVDMs. We also are working into increase the quality of our
tool by doing performance analysis using the BeTTy tool.
In the end, we are also working to quantify how much time
and costs we saved extending FaMa FW instead of creating
a totally new tool.

S. ACKNOWLEDGEMENT

This work has been partially supported by the European
Commission (FEDER) and the Spanish Government un-
der CICYT project SETT (TIN2009-07366), by the Andalu-
sian Government under ISABEL (TIC-2533), THEOS (TIC-
5906) projects and Talentia scholarships, by Evangelischer
Entwicklungsdienst e.V. (EED).

6. REFERENCES

[1] D. Batory, D. Benavides, and A. Ruiz-Cortés.
Automated analysis of feature models: Challenges
ahead. Communications of the ACM, December:45—47,
2006.

[2] D. Benavides, S. Segura, and A. Ruiz-Cortés.
Automated analysis of feature models 20 years later: a
literature review. Information Systems, 35:615-636,
2010.

[3] L. Chen, M. A. Babar, and N. Ali. Variability
management in software product lines: a systematic
review. In SPLC, pages 81-90, 2009.

[4] S. Cook. The complexity of theorem proving
procedures. In Proc. of ACM symposium on Theory of
computing, pages 151-158, 1971.

[5] F. Loesch and E. Ploedereder. Optimization of
variability in software product lines. In Proceedings of
the 11th International Software Product Line
Conference (SPLC), pages 151-162, Washington, DC,
USA, 2007. IEEE Computer Society.

[6] A. Metzger, K. Pohl, P. Heymans, P. Schobbens, and
G. Saval. Disambiguating the documentation of
variability in software product lines: A separation of
concerns, formalization and automated analysis. In
Int. Requirements Engineering Conf., pages 243-253,
2007.

[7] K. Pohl, G. Béckle, and F. J. van der Linden. Software
Product Line Engineering: Fundations, Principles and
Techniques. Springer—Verlag, Berlin, DE, 2005.

[8] F. Roos-Frantz, D. Benavides, A. Ruiz-Cortés,

A. Heuer, and K. Lauenroth. Quality-aware analysis in
product line engineering with the orthogonal
variability model. Software Quality Journal, pages
1-47, 2010. 10.1007/s11219-011-9156-5.

[9] S. Segura, J. Galindo, D. Benavides, J. Parejo, and

A. Ruiz-Cortés. Betty: Benchmarking and testing on

the automated analysis of feature models. In

U. Eisenecker, S. Apel, and S. Gnesi, editors, Sizth

International Workshop on Variability Modelling of

Software-intensive Systems (VaMoS’12), page 63-71,

Leipzig, Germany, 2012. ACM, ACM.

P. Trinidad, D. Benavides, A. Ruiz-Cortés, S. Segura,

and A. Jiménez. Fama framework - poster. In SPLC;

page 359, Sep 2008.

(10]

[11] J. White, B. Doughtery, and D. Schmidt. Selecting
highly optimal architectural feature sets with filtered
cartesian flattening. Journal of Systems and Software,
82(8):1268-1284, 2009.

