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Abstract

This paper discusses the role of deterministic components in the DGP and in the aux-

iliary regression model which underlies the implementation of the Fractional Dickey-Fuller

(FDF) test for I(1) against I(d) processes with d ∈ [0, 1). This is an important test in
many economic applications because I(d) processess with d < 1 are mean-reverting al-

though, when 0.5 ≤ d < 1, like I(1) processes, they are nonstationary. We show how

simple is the implementation of the FDF in these situations, and argue that it has better

properties than LM tests. A simple testing strategy entailing only asymptotically normally-

distributed tests is also proposed. Finally, an empirical application is provided where the

FDF test allowing for deterministic components is used to test for long-memory in the

per capita GDP of several OECD countries, an issue that has important consequences to

discriminate between growth theories, and on which there is some controversy.

JEL Clasification: C12 C22 O40

Keywords: Deterministic components, Dickey-Fuller test, Fractionally Dickey-Fuller

test, Fractional processes, Long memory, Trends, Unit roots.

∗Corresponding E-mail:jesus.gonzalo@uc3m.es. We are grateful to Claudio Michelacci and Bart Verspagen

for making the data available to us, and to Javier Hualde, Francesc Mármol, Peter Robinson and participants

in seminars at CREST (Paris), Ente Luigi Einaudi (Rome) and ECARES (Brussels) for useful comments on

preliminary drafts of this paper. The usual disclaimer applies.

1



1. INTRODUCTION

The goal of this paper is twofold. First, we extend an existing statistical procedure for

detecting a unit root against mean-reverting fractional alternatives in time series free of de-

terministic components to the case where they may exhibit a trending behavior or have a

non-zero mean. Second, we compare the behavior of this test to that of other tests available

in the literature. In particular, we focus on the Fractional Dickey-Fuller (FDF, henceforth)

test proposed by Dolado, Gonzalo and Mayoral (2002, DGM hereafter) who have generalized

the traditional DF test of I(1) against I(0) processes without deterministic components to the

broader framework of testing I(1) against I(d) with d ∈ [0, 0.5) ∪ (0.5, 1).1 Relying upon the
DF approach, the underlying idea is to test for the statistical significance of the coefficient φ

in the potentially unbalanced regression ∆yt = φ ∆dyt−1+εt, where εt is an i.i.d. disturbance,

L is the lag operator and ∆ = (1 − L). The regressor ∆dyt−1 is constructed by applying the
truncated binomial expansion of the filter (1 − L)d to yt−1, so that ∆dyt =

Pt−1
i= 0 πi(d) yt−i

where πi(d) is the i-th coefficient in that expansion.

The FDF test is based upon the t-ratio of φ̂ols , tφ(d), so that non-rejection of H0: φ = 0

against H1: φ < 0, implies that the process is I(1), namely, ∆yt = εt. Conversely, rejection

of the null implies that the process is I(d), 0 ≤ d < 1, namely, ∆dyt = C(L)εt, where the lag
polynomial C(L) has all its roots outside the unit circle. The distribution of tφ(d) depends on

whether d is assumed (arbitrarily) pre-fixed ( if a simple alternative is considered) or estimated

(when considering a composite alternative), and the distance 1 − d. When d is pre-fixed as
in the standard DF case (where d = 0), the asymptotic distribution of the tφ(d) is a N(0, 1)

variate when 0.5 < d < 1, whilst it is nonstandard, i.e., a functional of Fractional Brownian

motion (fBM), when 0 ≤ d < 0.5.2 In particular, for d = 0, tφ(d) follows the well-known

DF distribution, otherwise the critical values become less negative than the standard DF case

as d ↑ 0.5. By contrast, whenever d is pre-estimated using any (trimmed) T 1/2-consistent
1Although the case where d = 0.5 was treated in DGM, it constitutes a discontinuity point in the analysis

of fractionally integrated processes, splitting the class of I(d) processes into stationary (for d < 0.5) and

nonstationarity (for d ≥ 0.5). Moreover the behaviour of {yt} differs between d = 0.5 and d > 0.5;cf. Liu

(1998). For this reason, as is often the case in most of the literature, we ignore this possibility. To simplify the

notation in the sequel, however, we will refer to the permissable range of d under the alternative as 0 ≤ d < 1.
2The intuition for these results is that whenever the values of d under the null and the alternative hypothesis

are close (i.e., when d belongs to the nonstationary range or when d is estimated using a trimmed T 1/2-

consistent estimator) asymptotic normality follows under the null hypothesis, whereas when they distant (i.e.,

when d belongs to the stationary range) the limiting distributions are nonstandard.
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estimator3, bd, of d ∈ [0, 1), the asymptotic distribution of tφ (bd) becomes pivotal and is always
N(0, 1) for any value of d within the pre-specified range.

The advantages of this test, in parallel with the DF approach, rely on its simplicity and good

performance in finite samples, both in terms of size and power. Specifically, when compared

to other well-known tests for long memory, like the Lagrange Multiplier (LM) test developed

by Robinson (1994) in the frequency domain and its time domain version by Tanaka (1999),

the FDF test presents the advantage of not requiring the correct specification of a parametric

model. For this reason, although the FDF test is not the asymptotically uniformly most

powerful invariant (UMPI) test (see Tanaka, 1999) under a sequence of local alternatives

approaching the null at the T −1/2 rate in a parametric model with gaussian errors, it fares very

well in terms of power relative to both parametric and semiparametric tests in the frequency

and time domains, and even better than the UIMP test when errors are non-gaussian, as

discussed at length in DGM.4

Following the development of unit root tests in the past, where the canonical zero-mean

AR(1) model was subsequently augmented with deterministic components (including drifts,

and linear, nonlinear and broken trends), our goal in this paper is to investigate how the limiting

distribution of the FDF test changes when some deterministic components are considered in

the DGP and in the maintained hypothesis. In particular, we will restrict our analysis in this

paper to the role of a drift and/or a linear trend since many (macro) economic time series

exhibit this type of trending behavior in their levels. However, we will briefly discuss how to

extend the testing procedure to more general cases.

In the I(1) vs. I(0) framework, a constant and a linear time trend are typically included in

the auxiliary regression model in such cases so that, if a unit root exists, the constant term

3A trimming such as the one proposed in DGM (2002, formula (33)) may be necessary in small samples to

avoid estimates of d above 1. Also note that Lobato and Velasco (2003) have addressed the issue of optimality of

the FDF test where the DGP is a pure I(d), 0 ≤ d < 1 process with no deterministic components and found that
T 1/2-consistency in the estimation of d can be relaxed to T 1/4 log(T )-consistency. Since this condition holds for

many semiparametric estimators with an appropriate choice of the bandwidth parameter (see Velasco, 1999)

the range of estimators that can be used to implement the FDF test is much larger. However, investigating

how this generalization extends to the presence of deterministic components exceeds the scope of this paper.

Thus, in the sequel we will restrict our results to T 1/2- consistency although we conjecture that, under weaker

conditions, their results may still hold.
4As shown in DGM (2002), the proposed test has also better power properties than those based on a direct

estimation of d in semiparametric or parametric models since the former often yield large confidence intervals

whilst the precision of the latter hinges on the correct specification of the model.
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becomes a trend under the null hypothesis. As DF (1981) showed, including the linear time

trend in the maintained model allows one to achieve an invariant test to the presence of a

drift in the true data generation process. When dealing with I(d) processes, the standard

approach in the literature to account for deterministic components (henceforth denoted by

µ(t)) is to consider the additive model yt = µ(t) + I(d), so that E[∆d(yt − µ(t))] = 0 (see

Robinson, 1994 and Tanaka, 1999). In this setup, our first contribution in this paper is to derive

the corresponding (numerically) invariant FDF test of the null d = 1 against the alternative

0 ≤ d < 1 when µ(t) = α + βt . As will be shown below, invariance of the FDF test to

the values of α and β is achieved by including the nonlinear trend ∆dµ(t) in the maintained

hypothesis where such a variable is constructed in the same way as the regressor ∆dyt−1. As

when µ(t) = 0, pre-fixed values of d imply that the asymptotic distributions of the invariant

FDF test differ according to whether 0 ≤ d < 0.5 or 0.5 < d < 1 whereas they are always

N(0, 1) when d is estimated using a (trimmed) T 1/2-consistent estimator. As a by-product of

this analysis, using similar arguments to those in DGM, our second contribution is to provide

new theoretical results and Monte-Carlo evidence showing that the power of the FDF test

in finite samples compares very well with the power of the LM test except when both d is

extremely close to unity.

Lastly, we wish to stress that, despite focusing on the case where the error term in the DGP

is i.i.d, the asymptotic results obtained here remain valid when the disturbance is allowed

to be autocorrelated, as it happens in the (augmented) DF case (ADF henceforth). In this

respect, DGM (Theorems 6 and 7) have proved that, in order to remove the correlation, it is

sufficient to augment the set of regressors in the auxiliary regression described above with k

lags of the dependent variable such that k ↑ ∞ as T ↑ ∞, and k3/T ↑ 0, as in Said and Dickey
(1984). As discussed below, this procedure turns out to be much simpler than accounting

for serial correlation in the LM test. Moreover, as in the zero-mean case, we will show that

the FDF test is more powerful in most cases, without being subject to large size distortions.

An empirical application dealing with testing the possibility that long GNP per capita series

for several OECD countries may follow mean-reverting I(d) processes serves to illustrate our

proposed methodology.

The rest of the paper is structured as follows. Sections 2 analyzes the derivation of invariant

FDF tests when the null hypothesis is a random walk with or without drift. Section 3 focuses on

its comparison with the LM tests discussed above. Section 4 discusses an empirical application

of the previous tests. Finally, Section 5 draws some concluding remarks.
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Proofs of theorems and lemmae are collected in Appendix 1 while sets of non-standard

critical values for the FDF test with pre-fixed d ∈ [0, 0.5) appear in Appendix 2.
In the sequel, the definition of a I (d) process that we will adopt is that of an (asymptotically)

stationary process when d < 0.5, and of a non-stationary (truncated) process when d > 0.5.

Those definitions are similar to those used in, e.g., Robinson (1994) and Tanaka (1999) and are

summarized in Appendix A of DGM . Moreover, the following conventional notation is adopted

throughout the paper: Γ(.) denotes the gamma function, {πi (d)} represents the sequence of
coefficients associated to the expansion of ∆d in powers of L and are defined as

πi (d) =
Γ (i− d)

Γ (−d)Γ (i+ 1) .

The indicator function is denoted by 1(.) and In is the identity matrix of order n; Wd (.)

and B (.) represent standard Type II-fBM corresponding to the limit distributions of the stan-

dardized partial sums of asymptotically stationary (truncated) I (d) processes as defined in

Marinucci and Robinson (1999) and standard BM, respectively. Finally, w→ and
p→ denote

weak convergence and convergence in probability, respectively.

2. DEFINITION OF THE INVARIANT FDF TEST

2.1 The i.i.d. case

Employing the methodology in DGM we assume, like in Robinson (1994), that the process

yt is generated as the sum of a deterministic component, µ(t), and an I(d) component, ut, so

that

yt = µ(t) + ut, (1)

where

ut =
εt1(t>0)
∆− φ∆dL

. (2)

For simplicity, εt is assumed to be an i.i.d. error term.5 Our interest is in H0 : φ = 0

(yt is I (1)) vs. H1 : φ < 0 (yt is I (d)) . The null and alternative hypotheses can be rewritten

as
5This assumption will be later relaxed in subsection 2.2.
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H0 : ∆[yt − µ(t)] = εt, (3)

against

H1 :
³
∆− φ∆dL

´
[yt − µ(t)] = εt, (4)

In DGM it is shown that
¡
∆− φ∆dL

¢
= Π(L)∆d, where Π(L) = (∆1−d − φL) has all its

roots outside the unit circle if −2φ1−d < 0, and verifies Π(0) = 1 and Π(1) = −φ. Thus, under
H0, yt is I(1) whereas, underH1, denoting C(L) = Π(L)−1, with C(0) = 1 and C(1) = −1/φ, yt
becomes I(d) and follows the process ∆d[yt−µ(t)] = C(L)εt, where C(L) has its roots outside
the unit circle. As is standard in the context of unit root tests, the asymptotic distributions

of the proposed statistics will depend on the nature of the deterministic components included

in µ(t). In the sequel, we will restrict our attention to the most popular cases treated in

the literature, namely, when µ(t) is a linear time trend, µ(t) = α + βt or, alternatively, is

just a constant term, µ(t) = α. Hence, in the more general case, equation (1) becomes

(yt − α− βt) = ut. Premultiplying this expression by the polynomial (∆− φ∆dL) we get the

following auxiliary regression model (denoted hereafter as RM ) as the maintained hypothesis

RM 1 : ∆yt = β − φατ t−1 (d)− φβτ t−1 (d− 1) + φ∆dyt−1 + εt, (5)

with

τ t−1 (%) =
t−1X
i=0

πi (%) ,

where the coefficients πi (%) belong to the binomial expansion of (1− L)% in powers of L. Note
that ∆dt = ∆d∆−11{t>0} so that, in line with the notation used above, such a trend is labelled

as τ t−1 (d− 1) in the sequel. Both nonlinear time trends capture the trending behavior of the
series under the alternative. Notice that the DF case when d = 0 is embedded in this setup

since τ t−1(0) = 1 and τ t−1 (−1) = t − 1, giving rise to a constant and a linear time trend in
the maintained hypothesis. As for the intermediate cases, Figure 1 plots a range of the time

trends τ t−1 (d− 1) generated with different values of d ∈ [0, 1). As d becomes larger the trend
becomes more concave and its slope becomes flatter.
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Figure 1

The test of H0 : I (1) relies upon φ = 0 in model (5). Thus, when H0 is true, the process

becomes

DGP 1 : ∆yt = β + εt, t ≥ 1, (6)

whereas, under H1, it is an I (d) process with a linear time trend like in (4).

If the presence of the linear trend in the level of the series is discarded from the outset (as

e.g. when modelling interest or exchange rates) then α 6= 0 and β = 0 in (1), giving rise to

DGP 2 : ∆yt = εt, t ≥ 1, (7)

so that the corresponding auxiliary regression model regression becomes

RM 2 : ∆yt = −φατ t−1 (d) + φ∆dyt−1 + εt. (8)

As in the traditional DF framework, it can be shown that the t-ratio on the OLS estimator

of φ in either (5) or (8), denoted as tφ̂τolsand tφ̂
µ
ols
, respectively, is numerically invariant to the

(unknown) values of α and β.

In the following theorem, the asymptotic properties of the test under the null hypothesis are

presented.
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Theorem 1 Under the null hypothesis that yt is generated by DGP 1 (DGP 2), the OLS

estimator of φ in RM 1, φ̂
τ

ols, (of φ in RM 2, φ̂
µ

ols, when β = 0) is a consistent estimator of

φ = 0 and converges to its true value (φ = 0) at a rate T 1−d when 0 ≤ d < 0.5, and at the

standard rate T 1/2 when 0.5 < d < 1. The asymptotic distributions of the associated t−ratios,
tφ̂τols

and tφ̂µolsare given by

t
φ̂
i
ols

w→ Λi (d) if 0 < d < 0.5, for i = {µ, τ},

and,

t
φ̂
i
ols

w→ N (0, 1) if 0.5 < d < 1, for i = {µ, τ},

where Λi (d) , i = {µ, τ} are functionals of fBM (see Appendix 1) that depend on d but not on

the other parameters of the model.

Finally, if d is estimated, instead of assuming an (arbitrary) pre-fixed value under the alter-

native, then RM 1 would be as follows

∆yt = α1 + α2τ t−1(bdT ) + α3τ t−1(bdT − 1) + φ∆
bdT yt−1 + εt, (9)

where bdT is a (trimmed) T 1/2−consistent estimate of d.6 Likewise, if no trend is allowed

under H0, then the model becomes

∆yt = α1τ t−1(cdT ) + φ∆
bdT yt−1 + εt. (10)

As discussed in DGM (2002), among the different estimation procedures available in the time

domain which yield T 1/2-consistent estimates of d in the permissible range, the ML estimators

derived by Beran (1995) and Tanaka (1999) or the Minimum Distance estimators derived by

Galbraith and Zinde-Walsh (1997) and Mayoral (2004) can be used. Then, the following result

holds.

Theorem 2 Let bdT be a (trimmed) T 1/2-consistent estimator of d, 0 ≤ d < 1, such that

T 1/2(bdT−d) w→ ξ, where ξ is a non-degenerate random variable. Then, under the null hypothesis

6Effectively, if edT is a T1/2-consistent estimator of d, bdT = edT , if edT < 1 − c, and bdT = 1 − c, if edT ≥ 1,

where c > 0 is a (fixed) value in the neighborhood of zero that ensures that bdT is strictly smaller than unity.
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that yt is generated by DGP 1 (DGP 2), the asymptotic distribution of the t − ratios on the
OLS coefficient associated to φ in (9) and in (10) , t

φ̂
τ
ols
(bd) and t

φ̂
µ
ols
(bd), are given by

t
φ̂
i
ols
(bd) w→ N (0, 1) , i = {µ, τ}.

To check how the previous asymptotic results perform in finite samples, Tables A2a-A2b

in Appendix 2 report the empirical critical values of tφ̂τols and tφ̂
µ
ols
in RM 1 and RM 2 for

different significance levels and different values of d. The results are based on a Monte-Carlo

study with a number of replications N = 10, 000 of DGP 2 (since the test is invariant to

the value of α and β) where σε = 1 and T = 100, 400, 1000. As the theory predicts, the

critical values for d ∈ [0, 0.5) are clearly different from those corresponding to a one-sided

test using a standardized N(0, 1) distribution (−1.28,−1.64 and −2.33, respectively, for the
three significance levels reported below). By contrast, when d ∈ (0.5, 1), the critical values
resemble much more those of a N(0, 1) distribution. This is the case for values of d > 0.6

and samples sizes T ≥ 100, although for T = 100 the test is slightly under-sized. Nonetheless,
in the case where d is estimated using Mayoral’s (2004) Minimum Distance (MD) estimator,

which satisfies the requirements above, the empirical sizes at the 5% nominal level are 5.18 %,

5.12 %and 4.98 % for T = 100, 400 and 1000, respectively. In this case, moreover, the power

of the FDF test in model RM1 when d = 0.9 happens to be fairly satisfactory ( 26.7%, 65.4%

and 94.3% for T= 100, 400, and 1000, respectively). The rejection frequencies when using

RM2 turn out to be very similar and are not reported. Thus, on the basis of these results, we

recommend estimating d.

Finally, it is convenient to finish this section with a brief discussion about the implications of

running the FDF test including the same deterministic components µ(t) as in the DGP, instead

of the non-linear trends τ t−1(d) and τ t−1(d − 1) defined above.7 To illustrate the effects of

such a way of proceeding, let us assume that, under the null, the DGP is a random walk with

a drift, i.e., ∆yt = α+ εt and that, under the alternative the regression model becomes8:

∆yt = α+ φ∆dyt−1 + et, (11)

7Note that, statistically speaking, the specification of the maintained hypothesis including the same deter-

ministic terms as the DGP is unsound since the unconditional expectation of yt differs under the null and the

alternative.
8The following reasoning equally holds when both the DGP and the auxiliary regression model contain the

linear time trend µ(t) = α+ βt.
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where ∆dyt−1 = ∆d−1α+∆d−1εt−1 = ατ t−1(d− 1) +∆d−1εt−1. As explained above, τ t−1(d−
1) = t− 1 when d = 0 and equals 1 when d =1. In the intermediate cases, when d ∈ (0, 1), it
is easy to prove that τ t−1(d− 1) is of order O(T 1−d) since, by Stirling’s approximation, we get
that πi (d− 1) = Γ(i+ 1 − d)/[Γ(1 − d)Γ(i + 1)] ∼ i−d/ Γ(1 − d). Hence, the sum from 1 to

T of those terms will yield the previous order of magnitude.9 This implies that the variance

of the deterministic and stochastic components of ∆dyt−1 are O(αT 3−2d)) for the former and

Op(σ
2T 2(1−d)), when d ∈ (0, 0.5), and Op(σ2T ), when d ∈ (0.5, 1), for the latter. Hence, the

dominating component in (11) is the nonlinear trend induced by ∆dyt−1 implying that the

t-ratio tφ̂ols(d) will always be asymptotically distributed as N(0, 1), even when d ∈ (0, 0.5).
This result mimics the one derived by West (1988) in the I(1) vs. I(0) framework. Moreover,

as Hylleberg and Mizon (1989) noticed in that case, the finite sample behavior of the test

will depend on the relative size of α and σ2. When α is sufficiently large relative to σ2 the

asymptotic N(0, 1) approximation will hold in finite sample whereas in the opposite case, its

behavior will be dominated by ∆d−1εt−1, so that, as shown in Theorem 1 above, the finite

sample distribution will be close to the non-standard distribution Λµ(d) when d ∈ (0, 0.5).
However, the main drawback of implementing the FDF test in (11) is that if the series has

a linear trend (α 6= 0) then the power of the test will be very low for values of d sufficiently
smaller than unity. Indeed, for d = 0, the power is null.

2.2 Stationary case: The invariant AFDF test

Next, we generalize the DGP considered in (1) by assuming that ut follows an stationary

linear AR(p) process, namely, A(L)ut = εt where A(L) = 1− a1L− ...apLp with A(z) 6= 0 for
|z| ≤ 1.10 Following the same procedure as before, the auxiliary model for the process without
deterministic components (µ(t) = 0) becomes

A(L)∆yt = φA(1)∆dyt−1 + φ eA(L)∆d+1yt−1 + εt, (12)

where A(L) = A(1) + eA(L)∆ with eA(L) having its roots outside the unit circle.
Rewriting (12) as ∆yt = φA(1)∆dyt−1 + [1−A(L) + φ eA(L)∆dL]∆yt + εt, yields

9Note that d = 1 implies O(1) whereas d = 0 implies O(T ), in accord with the previous discussion of the two

extreme cases.
10The assumption of a finite lag AR(p) model is made for illustrative purposes since the results based on

DGM (Theorem 7), to be discussed below, are valid for any stationary ARMA process.
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∆yt = φA(1)∆dyt−1 +Ψ(L)∆yt + εt,

such that Ψ(L) = [1 − A(L) + φ eA(L)∆dL], with Ψ(0) = 0 (since A(0) = 1) and Ψ(1) =

1−A(1) <∞, implies that Ψ(L) = B(L)L. Thus

∆yt = φA(1)∆dyt−1 +B(L)∆yt−1 + εt, (13)

where, making use of the arguments in Theorem 7 of DGM, it can be proved that the infinite

lag polynomial B(L) can be approximated by an AR (k) polynomial, Bk(L), such that k3/T ↑ 0
when k ↑ ∞ and T ↑ ∞ (see Said and Dickey, 1984). For example, in the AR(1) case, namely,

when A(L) = 1−aL, then A(1) = 1−a and B(L) = 1+(1−L)d. Therefore, in the case where
the disturbance is serially correlated, the FDF test of H0 : d = 1 vs. H0 : 0 ≤ d < 1, known as
the Augmented FDF (AFDF) test, is based on the t-ratio on the coefficient of ∆dyt−1 in the

auxiliary model

∆yt = φA(1)∆dyt−1 +Bk(L)∆yt−1 + εt. (14)

Note that if A(1) ' 0, i.e., the AR polynomial has a root close to unity, then a test on φ = 0
will have little power when φA(1) ' 0 even if φ 6= 0, as it happens in the standard AFDF test.
Finally, along the lines of the derivation of (9) and (10), if we now consider the case where

µ(t) = α+ βt, the AFDF test will be implemented in the following auxiliary model

∆yt = α1 + α2τ t−1(d) + α3τ t−1(d− 1) + φA(1)∆dyt−1 +Bk(L)∆yt−1 + εt, (15)

where α3 = 0 if µ(t) = α.

3. FDF VS. LM TESTS

As discussed in the Introduction, the closest competitor to the FDF test is Tanaka’s (1999)

LM test in the time domain. This test, denoted as τT , considers the null hypothesis of d = d0

against the alternative of d = d0 + θ where θ 6= 0 for the DGP ∆d+θ[yt − µ(t)] = εt. Thus, in

line with the hypotheses considered in this paper, we will focus on the particular case where

d0 = 1 and 0 < θ ≤ 1. Assuming that εt ∼ N(0,σ2), the log-likelihood function can be written
as

11



L (θ,σ) = −T
2
ln(σ2)− 1

2σ2

TX
t=1

[(1− L)1+θyt]2. (16)

Then, taking the derivative of the log-likelihood function w.r.t. θ, evaluated at θ = 0, and

making use of the result
P ∞

j=1j
−2 = π2/6, yields the following score-LM test

τT =

r
6

π2
T 1/2

T−1X
j=1

j−1bρj w→ N (0, 1) , (17)

where bρj =P T
t=j+1∆eyt∆eyt−j /P T

t=1(∆eyt)2, and ∆eyt are the OLS residuals from regressing

∆yt on ∆µ(t). Therefore, if just a constant term is considered, then ∆eyt = ∆yt; likewise, with
a linear trend, ∆eyt = ∆yt −∆y where ∆y denotes the sample mean of ∆yt.
As Breitung and Hassler (2002) have shown, an alternative simpler way to compute the score

test is as the t-ratio (tγ) of bγols in the regression
∆eyt = γx∗t−1 ∗ et, (18)

where x∗t−1 =
P t−1

j=1 j
−1∆eyt−j . Intuitively, since tγ = P

(∆eytx∗t−1)/bσe(P(x∗t−1)2)1/2 and,
under H0 : θ=0, bσe tends to σ and plim T−1

P
(x∗t−1)2 = π2/6, then tγ has the same limiting

distribution as τT .

An advantage of the τT test if that, by working under the null, the regressor ∆dyt−1 in the

FDF test does not need to be constructed, albeit one needs to construct x∗t−1 . Furthermore,

Tanaka (1999) has proved that, under a sequence of local alternatives of the type θ = −T 1/2δ
with δ > 0, τT (or tγ) is the UMPI test. In such a case its limiting distribution becomes

N(−δπ2/6, 1) whereas DGM (Th. 3) obtain that the corresponding distribution of the FDF

test is N(−δ, 1). Since π2/6 > 1, the non-centrality parameter of the LM test is larger and

hence it is more powerful. To the best of our knowledge, however, the case of fixed alternatives

has not been studied in the literature and therefore, in the sequel, we deal with this case.

Suppose that the alternative holds, namely, the DGP is now ∆dyt = εt with d ∈ (0, 1).11
Then, ∆dyt = ∆−θεt where θ = d− 1 < 0. Then the following result holds.
11The case where d = 0 is excluded since Γ(−1) ↑ ∞. In other words, the standard formulae (see Baillie, 1996)

for the autocorrelations of a pure I(θ) process is only valid when θ > −1, i.e., d > 0.
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Theorem 3 : If ∆yt = ∆−θεt where d ∈ (0, 1) and hence θ = d− 1 < 0, then

T−1/2tφ̂ols(d)
p→ (d− 1)Γ(2− d)
[Γ(3− 2d)− (d− 1)2Γ2(2− d)]1/2 = cFDF (d),

T−1/2τT
p→
r
6

π2
Γ(2− d)
Γ(d− 1)

∞X
j=1

j−2(2−d) = cLM(d),

where
PT−1
j=1 j

−2(2−d) corresponds to Riemann’s zeta function which is summable since 2(2 −
d) > 2, and cFDF (d) (cLM(d)) denotes the non-centrality parameter under the fixed alternative

θ 6= 0 of the FDF (LM) test.
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Figure 2

Figure 2 displays the two above-mentioned non-centrality parameters for d ∈ (0, 1).12 The
most striking finding is that, whereas the depicted values of cFDF (d) are monotonically de-

creasing in d, those of cLM(d) are non-monotonic, and that cFDF > cLM for almost all values

of d except for those very close to 1 and even in this case, the distance in favor of cLM is very

small. The intuition for the non-monotonicity of cLM (d) is the presence of Γ(d − 1) in the
denominator of cLM in Theorem 3. As d ↑ 0 , Γ(d− 1) gets larger in absolute value and there-
fore cLM becomes closer to zero, a feature which does not affect cFDF . Moreover, the result

12Notice that Theorem 3 excludes the point d = 0. For d = 0, it is easy to show that CFDF = −1. As for CLM ,
notice that ∆yt = ∆εt and therefore the only non-zero correlation is ρ1 = −0.5. Thus cLM = −0.5p6/π2 '
−0.13.
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in Theorem 3 is an asymptotic one and, as will be shown below, for realistic sample sizes, the

rejection rates of the FDF test under the alternative are also larger than those of the LM test,

except in cases where d is very close to unity and the error term is normally distributed. Thus,

for fixed alternatives, the FDF is bound to be more powerful than the LM test.

In the case where A (L)ut = εt, Tanaka (1999) has proved that τT = bω−1T 1/2Σj−1bρj w→
N (0, 1) , where ω2 = (π2/6)− (κ1...κp)0Φ−1(κ1 ...κp) with κi = Σ

∞
j=1j

−1cj−i and cj are the

coefficients of Lj in the expansion of 1/A(L). If A(L) = 1−aL, ω2 = (π2/6)− (a−2−1)(ln(1−
a))2 whereas for more general AR (p) processes, the computation gets very involved. Breitung

and Hassler (2002), however, argue that computation of the LM test in the tγ helps to account

for serial correlation. Using the approach by Agiakglou and Newbold (1994), they advocate

implementing regression (18), augmented with p lags of ∆yt, but this time replacing ∆yt and

x∗t−1with the residuals obtained from the estimation of an AR(p) process for ∆yt.

Monte-Carlo evidence in favor of the FDF test was provided by DGM in the case where there

are not deterministic components (see Tables I and II in DGM). In what follows we provide

some additional simulations when µ(t) = α+ βt. Table 1 presents the rejection frequencies for

local alternatives at the 5% level of the FDF and LM tests in its two alternative versions τT and

tγ. The DGP, ∆dyt = εt, is simulated 10, 000 times, with d = 1− δ/T 1/2 for δ = {0.5, 1.0, 1.5
and 2.0}, T = {25, 50, 100, 400}, σ = 1 and the considered auxiliary model is RM1. Since in
the case where d is estimated there are very small size distortions, we have used Mayoral’s

(2004) approach to estimate d and 5% c.v. at the lower tail of a N(0, 1) to construct the

critical region. Bold figures signify better performance of either test. As can be observed, the

most relevant finding is that, except for very large sample sizes, the FDF has larger power

than the LM tests, in accord with the result derived in Theorem 3 above. Moreover, there

does not seem to be a power loss in finite samples when deterministic components are included

relative to the case where they are not (see DGM, 2002, Table 5). Table 2, in turn, reports the

power when the DGP is ∆dyt = εt/(1−0.7L) for several values of d. In this case, the FDF test
clearly outperforms the LM tests. Lastly, we briefly report some results on the consequences

of having departures from gaussianity in the distribution of εt in the above-mentioned DGP.

For example, when the errors follow a zero-mean standarized χ2(1) distribution and they are

i.i.d, the power of the FDF test run with RM1, for d = 0.8, 0.9 and T = 100, is 57.9 % and

27.5 % whereas the corresponding rejection frequencies of Tanaka’s τT are 52.8 % and 17.2

%, respectively. Thus, the FDF test seems to fare better than the LM test in the presence on

non-gaussian errors.
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TABLE 1

Power of FDF and LM tests, 5% Level (RM1), Local Alternatives

DGP: ∆dyt = εt, d = 1− δ/T 1/2

LM : tγ LM : τT FDF

δ|T 25 50 100 400 25 50 100 400 25 50 100 400

0.5 13.1 14.9 14.5 11.0 2.3 8.5 10.4 14.4 16.8 16.9 15.3 14.9

1 25.7 27.0 27.1 28.1 5.9 13.9 23.2 30.6 25.8 27.3 29.6 28.8

1.5 31.0 36.8 44.2 50.1 9.4 28.4 42.8 54.1 32.9 37.1 45.6 46.1

2 46.2 56.9 65.0 70.2 18.3 45.3 63.4 73.0 47.2 58.1 58.2 64.3

TABLE 2

Power AFDF and LM Tests, 5% Level (RM1)

DGP: ∆dyt = a∆dyt−1 + εt; a = 0.7

LM (τT ) LM (tγ) AFDF

d T = 100 T = 400 T = 100 T = 400 T = 100 T = 400

0.9 5.7% 12.0% 12.5% 16.1% 19.3% 26.7%

0.7 7.1% 25.5% 16.4% 36.6% 28.3% 44.3%

0.6 26.4% 71.7% 17.2% 86.9% 39.0% 99.4%

0.3 53.2% 96.85% 47.0% 98.2% 51.2% 100.0%

0.1 68.9% 100% 73.7% 100% 70.3% 100.0%

A simple strategy to test for the value of d in the presence of deterministic com-

ponents

In view of the above results, a natural approach arises to test the null of I(1) vs. I(d) in the

presence of deterministic components when d is estimated. Before commenting on this testing

strategy, however, it is important to stress that an interesting consequence from our analysis

is that, in contrast to the use of the standard DF test for H0 : d = 1 when deterministic

components are present, there is no need to use new critical values relative to the case where

no deterministic components are considered. This is so since all the critical values come from
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the N(0, 1) distribution. These two features transform the problem of determining the right

deterministic components into the standard issue of variable selection.

Our proposed testing strategy for H0 : d = 1 vs. H1 : 0 ≤ d < 1 will take as starting point
RM 1 in (5). First, if the null is rejected, then the process is not I(1) and the testing strategy

stops. If the null is not rejected, then we can test whether the coefficient of the nonlinear trend

τ t−1(d− 1) is significant. If it is significant, we stop. Otherwise, we estimate RM 2 including

only τ t−1(d) and follow again the same strategy. In sum, our proposed strategy is easy to

apply and turns out to be much simpler than those often used in applied work, as the next

section illustrates.

4. EMPIRICAL ILLUSTRATION

An interesting application of the theoretical results applied above is to examine whether

the time-series of GDP per capita of several OECD countries behave as I(d) processes with

0.5 < d < 1. These are series which are clearly trending upwards and therefore provide

nice examples of the role of deterministic terms in the use of the FDF test. As pointed out

in an interesting paper by Michelacci and Zaffaroni (2000), such a long- memory behavior

could well explain the seemingly contradictory results obtained in the literature on growth and

convergence that a unit root cannot be rejected in (the log of) those series and yet a 2% rate

convergence rate to a steady-state level (approximated by a linear trend) is typically found

in most empirical exercises of this kind (see Barro and Sala i Martín, 1995 and Jones, 1995).

The explanation offered by these authors to this puzzle relies upon two well-known results

in the literature on long-memory processes, namely that standard unit root tests have low

power against values of d in the nonstationary range (0.5 < d < 1), and that for all values of

d ∈ [0, 1) there is “mean reversion”, in the sense that shocks do not have permanent effects.
Using Maddison’s (1995) data set of annual GDP per capita series for 16 OECD countries

during the period 1870 - 1994 (125 observations) and a log-periodogram estimator of d due to

Robinson (1995), they find that in most countries the order of fractional integration is in the

interval (0.5, 1), compatible with the 2% rate of convergence found in the literature of beta-

convergence and, therefore, validating in this way their explanation of the puzzle. Since that

estimation procedure is restricted to the range of I(d) processes with finite variance, namely,

|d| < 1/2 , the authors proceed by first detrending the data and then applying the truncated
filter (1− L)1/2 to the residuals, discarding the first 10 observations to initialize the series.
The previous results have been recently criticized by Silverberg and Verspagen (2001) on
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the grounds of both the use of the (1−L)1/2 filter and Robinson’s semi-parametric estimation
procedure, which suffers from serious small-sample bias. Instead, they propose the use of

the first-difference filter, (1 − L), to remove the trend and of Sowell’s (1992) parametric ML
estimator of ARFIMA models to tackle short-memory contamination in the estimation of d.

Using those alternative procedure they find, in stark contrast to Michelacci and Zaffaroni’s

results, that d tends to be either not significantly different from unity or significantly above

unity for most countries in an extended sample of 25 countries.

To shed light on this controversy, we apply the invariant FDF test developed in Section 2 to

the logged GDP p.c. of a subset of ten of the main OECD countries which are listed in Table

3, where the estimated intercept and its standard deviation in the regression ∆yt = β+ ut is

reported. As can be inspected, the mean (average GDP p.c. growth rate) is always highly

significant making it convenient to use RM 1 as the maintained hypothesis. Indeed, when

the ADF and the Phillips-Perron (P-P) unit root tests (not reported) were computed using

a constant and a time trend in the regression model, the I(1) null hypothesis could not be

rejected. The KPPS test, which takes I(0) as the null, yielded overall rejection confirming the

high persistence of the series. Thus there are clear signs that the first-difference series have a

drift and that it is likely that they are nonstationary.

TABLE 3

Estimates of bβ and SD(bβ)
Country Mean St. D.

Australia 0.012 0.004

Canada 0.0195 0.005

Denmark 0.018 0.008

France 0.018 0.006

Germany 0.018 0.007

Italy 0.019 0.006

Netherlands 0.015 0.006

UK 0.013 0.003

USA 0.017 0.005

Spain 0.019 0.005

Since there were clear signs of autocorrelation in ut, an AFDF test with intercept and linear

trend according to RM1 was applied to the series. The number of lags of the dependent
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variable was chosen according to the AIC criterion with a maximum lag of length k = 4,

since T = 125 (95 for Spain) and T 1/3 = 5. Pre-estimation of d using Sowell´s (1992) ML

parametric approach for various ARFIMA (p, d, q) specifications of the first-differenced data,

with p and q up to four lags, allows one to select a value of d for each country on the basis

of the AIC criterion. The reported estimates of d in the preferred models, bdML, presented in
the second and fourth columns of Table 4, add unity to the obtained estimates. Estimates

were also obtained using Mayoral ´s (2004) MD estimation approach, with the series in levels,

yielding the pre-estimates of d, bdMD , in the preferred models presented in the third and fifth
columns of Table 4. Both sets of estimates tend to provide similar results. In general, the

estimated values of d belong to (0.5, 1). Using the AFDF test with pre-fixed values of d, the

first four columns of Table 5 show strong rejections of H0: d = 1 in most cases. Likewise,

for robustness, the last column reports the results of the FDF test in RM 1 with estimated

d, using the bdMD estimates in Table 4 and a trimming value of c = 0.05 for Australia whose
estimated d exceeds unity. Again, with the exception of Spain, we find strong rejections of

the null. Thus, our results seem to favor nonstationary, albeit mean-reverting, values of d, in

agreement with Michelacci and Zaffaroni (2000) and therefore consistent with an exogenous

growth assumption.13

TABLE 4

Estimates of d (ML and MD)

Country bdML model bdMD model

Australia 0.69 (1, d, 0) 0.71 (0, d, 0)

Canada 0.50 (1, d, 0) 0.44 (1, d, 0)

Denmark 0.71 (1, d, 0) 0.72 (1, d, 0)

France 0.77 (0, d, 1) 0.82 (0, d, 1)

Germany 0.81 (0, d, 1) 0.80 (0, d, 1)

Italy 0.82 (0, d, 1) 0.81 (0, d, 1)

Netherlands 0.77 (0, d, 1) 0.77 (0, d, 1)

UK 0.60 (1, d, 0) 0.71 (1, d, 0)

USA 0.78 (0, d, 0) 0.73 (1, d, 0)

Spain 0.83 (1, d, 0) 0.92 (0, d, 0)

13Use of the testing strategy described in Section 3 yields similar results.
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TABLE 5

AFDF Test against FI(d)

Country | d 0.9 0.8 0.7 0.6 bdMD
Australia -2.27* -2.41* -2.55 -2.67* -2.54*

Canada -2.78* -2.87* -2.95* -3.05* -4.21*

Denmark -2.84* -2.99* -3.09* -5.83* -3.16*

France -2.26* -2.32* -2.38* -2.47* -2.42*

Germany -2.63* -2.73* -2.81* -3.87* -2.77*

Italy -2.04* -2.06* -2.03 -2.05 -2.11*

Netherlands -2.41* -2.52* -2.56* -2.62* -2.54*

UK -2.31* -2.34* -2.36* -2.36* -2.41*

USA -3.12* -3.29* -3.39* -3.53* -3.42*

Spain -0.24 -0.39 -0.66 -0.79 -0.34

Note: (*) denotes 5%- rejection of the null hypothesis of a unit root versus a fractional one.

5. CONCLUSIONS

This paper has developed statistics for detecting the presence of a unit root in time-series

data against the alternative of mean-reverting fractional processes allowing for deterministic

terms, µ(t), (a constant or a constant and a time trend) in the DGP and in the auxiliary

regression used to implement the FDF test. Two main findings have been obtained. First,

if the DGP is yt = µ(t) + I(d), with d ∈ [0, 1), so that E(∆dyt) = ∆dµ(t) then inclusion
of nonlinear trends of the form ∆dµ(t) in the regression model yields invariant tests to the

parameters defining µ(t). Alternatively, if the error term in the DGP is serially correlated, the

set of regressors involving ∆dµ(t) and ∆dyt−1 should be augmented with a suitable number

of lags of the dependent variable, ∆yt. This test has a non standard asymptotic distribution

when d is (arbitrarily) pre-fixed in the range (0, 0.5). However, asymptotic normality holds

either when d ∈ (0.5, 1) or when d is estimated using a (trimmed) T 1/2−consistent estimator.
Second, we provide new theoretical results regarding the gains in power under fixed alternatives

of applying the FDF test instead of conventional LM tests.

Notice that the proposed approach not only is very simple but it could be easily extended to

account for other different deterministic components to the linear time trend considered here.
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For example, under nonlinear trends (quadratic, cubic, etc.) or structural breaks (in the mean

or the slope of the linear time trend), all what is needed is to construct the corresponding

∆dµ(t) terms by means of the truncated binomial expansion of (1− L)d in terms of L. As in
the case considered in this paper, implementation of the FDF test in those circumstances can

be easily done with any standard econometric packages.

Useful extensions of the present paper’s setup that are under current investigation by the

authors include testing fractional integration versus I(0) allowing for structural breaks (see

Dolado, Gonzalo and Mayoral, 2005), testing for cointegration between two I(d) series which

have a non-zero drift and where a constant term or a linear trend is included in the regression

model and finally, an extension of this framework to panel data.
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APPENDIX 1

In order to prove Theorem 1, the following lema would be needed.

Lemma 1 Let yt be a random walk process defined as in (7) . Under the assumptions of

Section 2, the following convergences follow:

If 0 < d < 1, then

1. T−(1−d)
PT
i=2 τ t−1 (d)→ 1

(d−1)Γ(−d) .

2. T−(2−d)
PT
i=2 τ t−1 (d− 1)→ 1

Γ(3−d) .

3. T−(1−2d)
PT
i=2 τ

2
t−1 (d)→ C1 (d) <∞, for d ∈ (0, 0.5) , andPT

i=2 τ
2
t−1 (d)→ C2 (d) <∞, for d ∈ (0.5, 1) .

4. T−(3−2d)
PT
i=2 τ

2
t−1 (d− 1)→ 1

(3−2d)Γ2(2−d) .

5. T−(2−2d)
PT
i=2 τ t−1 (d) τ t−1 (d− 1)→ C3 (d) .

6.
PT
i=2 τ t−1 (d) εt

d→ N
¡
0, σ2C1

¢
for d ∈ (0, 0.5) .

T−(1/2−d)
PT
i=2 τ t−1 (d) εt

w→ N
¡
0, σ2C2

¢
for d ∈ (0.5, 1) .

7. T−(3/2−d)
PT
i=2 τ t−1 (d− 1) εt w→ N

¡
0, σ2C4

¢
, C4 =

1
(3−2d)Γ2(2−d) .

8. T−(1−d)
PT
i=2∆

dyt−1εt
w→ σ2

R 1
0 W−d (r) dB(r) for d ∈ (0, 0.5) , and

T−0.5
PT
i=2∆

dyt−1εt
w→ σ2N

³
0, Γ(2d−1)

Γ(d)

´
for d ∈ (0.5, 1) .

9. T−(3/2−2d)
PT
i=2 τ t−1 (d)∆

dyt−1
w→ 1

Γ(−d)(d−1)
R 1
0 r

−dW−d (d)dr for d ∈ (0, 0.5), and
T−(1−d)

PT
i=2 τ t−1 (d)∆

dyt−1
w→ 0 for d ∈ (0.5, 1) .

10. T−(2−d)
PT
i=2 τ t−1 (d− 1)∆dyt−1

p→ 0 for d ∈ (0.5, 1), and
T−(5/2−2d)

PT
i=2 τ t−1 (d− 1)∆dyt−1 w→ σ2

R 1
0 r

1−dW−d (r) dr for d ∈ (0, 0.5) .

11. T−1
P
(∆dyt−1)2

p→ V ar(y) if d ∈ (0.5, 1) , and
T−2(1−d)

P
(∆dyt−1)2

w→ σ2
R 1
0 W

2
−d (r) dr if d ∈ [0, 0.5),

12. T−1
PT
i=2∆

dyt−1
p→ 0 if d ∈ (0.5, 1) , and

T−(3/2−d)
PT
i=2∆

dyt−1
w→ R 1

0 W−d (r) dr if d ∈ (0, 0.5).
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Proof of Lemma 1

1. Notice that
PT
i=2 τ t−1 (d) can alternatively be written as

lim
T→∞

TX
i=2

τ t−1 (d) = lim
T→∞

Tπ0 (d) + (T − 1)π1 (d) + ... (19)

and also note that
P∞
i=0 πi (d) = 0, then,

lim
T→∞

T−(1−d)
TX
i=2

τ t−1 (d) = lim
T→∞

T−(1−d)
TX
i=0

(T − i))πi

= T d lim
T→∞

TX
i=0

πi (d)− T−(1−d) lim
T→∞

TX
i=1

iπi (d) (20)

=
1

Γ (−d) limT→∞
T−(1−d)

TX
i=1

i−d =
−1

Γ (−d) (1− d) , (21)

where the last equality follows from applying L’Hôpital’s rule to the first term of (20)

and noticing that it tends to zero.

2. In this case,

lim
T→∞

T−(2−d)
TX
i=2

τ t−1 (d− 1) = 1

Γ (1− d) limT→∞

TX
t=1

tX
i=1

i−d =
1

Γ (3− d) .

3. Since
P∞
i=0 πi (d) = 0, it is possible to write π0 = −

P∞
i=1 πi (d) ,π0+π1 = −

P∞
i=2 πi (d) ,

etc. Then,

TX
i=2

τ2t−1 (d) = −
TX
j=1

 ∞X
i=j

πi (d)

2 . (22)

Since the coefficients {πi (d)}∞i=0 are such that πi ∼ i−1−d, then
³P∞

i=j πi (d)
´2

=

O
¡
j−2d

¢
(see, Davidson (1994, p. 32)). This implies that if d ∈ (0.5, 1) , the quantity in

(22) is summable and if d ∈ (0, 0.5) it is O ¡T 1−2d¢ .
4. The proof of this result is similar to the previous ones and therefore is omitted.

5. Idem.
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6. These limits are a direct application of Corollary 5.25 p.130 in White (1984).

7. Idem.

8. See DGM (2002) for the proofs of these results.

9. The first result follows from point 1 in this lemma and the results in Dolado and Marmol

(2004) . The second follows from noting that T−(1−d)E
³PT

i=2 τ t−1 (d)∆
dyt−1)

´
= 0 and

that T−2(1−d)E
µ³PT

i=2 τ t−1 (d)∆
dyt−1)

´2¶→ 0.

10. Idem.

11. See DGM for the proof of this result.

12. Idem.¥

Proof of Theorem 1

For simplicity, let us consider first RM 2 defined in equation (8). Since the nature of the

asymptotic distribution depends upon the value of d used to run the regression, two cases

ought to be distinguished.

I. First case: 0 ≤ d < 0.5. Define the scaling matrix

ΥT =

Ã
T 1/2−d 0

0 T 1−d

!
, (23)

and taking into account the results in Lemma 1 we easily getÃ
T 1/2 0

0 T 1−d

!Ã
α̂

φ̂

!
=

 C1
1

Γ(−d)(1−d)σ
R 1
0 r

−dW−d (d)dr
1

Γ(−d)(1−d)σ
R 1
0 r

−dW−d (d) dr σ2
R 1
0 W

2
−d (r) dr

−1
Ã

σN (0, C1)

σ2
R 1
0 W−d (r) dB(r)

!
+ op (1) ,

implying that

tµ
φ̂

d→
C
1/2
1 (Γ (−d) (1− d))−1

hR 1
0 W−d (r) dB(r)−B (1)

R 1
0 r

−dW−d (r) dr
i

·
C1
R 1
0 W

2
−d (r) dr −

³
1

Γ(−d)(1−d)
R 1
0 r

−dW−d (d)dr
´2¸1/2 ,

which is a functional of fractional brownian motions and other terms just depending on d.
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II. Second case: 0.5 < d < 1. Defining the scaling matrix

ΥT =

Ã
1 0

0 T 1−d

!

and taking into account the results of Lemma 1 is straightforward to check that tµ
φ̂
∼ N (0, 1) .

Consider now RM 1 as defined in (5) . To see that the parameter φ is numerically invariant

to any linear transformation in yt, note that the regression (5) can be equivalently written as

∆yt = α0 + (α1 + φy0) τ t−1 (d) + (α2 + φβ) τ t−1 (d− 1) + φ∆d(yt−1 − y0 + β (t− 1)) + εt

= α∗0 + α∗1τ t−1 (d) + α∗2τ t−1 (d− 1) + φ∗∆dξt−1, (24)

where φ∗ = φ, α∗0 = α0, α
∗
1 = (α1 + φy0), α∗2 = (α2 + φβ) and under the null hypothesis, ξt

is a random walk without drift and with initial condition equal to zero. Following Hamilton

(1994, p.498) , it is straightforward to see that the OLS estimator of φ and its associated t-

statistic are numerically identical to the one that would be obtained if the original process was

ξt instead of yt. Taking into account this invariance property, it is possible to consider without

loss of generality that y0 = β = 0. Then, the rest of the proof is similar to the previous one

and, therefore, is omitted.¥

Proof of Theorem 2

When bd is chosen such that bd = bdT if bdT < 1− c and bd = 1− c if bdT ≥ 1− c, where c is a
(fixed) value in the neighborhood of zero, it is clear that d̂

p→ 1 − c, since d̂T is a consistent
estimator of d (= 1) . Applying the mean value theorem (MV T ) on tµφols around the point

(1− c) yields

tµφols

³
d̂
´
= tµφols

(1− c) +
∂tµφols

³
d̆
´

∂d

³
d̂− (1− c)

´
, (25)

where d̆ is an intermediate point between d̂ and (1− c) . This implies that in order to prove
that

³
tµφols

³
d̂
´
− tµφols (1− c)

´
= op (1) it has to be shown that

∂tµφols
(d̆)

∂d

³
d̂− (1− c)

´
= op (1).

Notice that d̆ ∈
³
d̂, 1− c

´
and therefore, d̆

p→ (1− c) . In order to replace d̆ in (25) by its
probability limit, 1− c, it is needed to show that ∂tµφols (d) /∂d converges uniformly to a non-
stochastic function in an open neighborhood of (1− c) (see Amemiya, 1985). Using the same
strategy as in DGM (2002), it can be shown that T−1/2∂tµφols (d) /∂d converges pointwise to

zero. The uniform convergence follows from the pointwise convergence and an equicontinuity
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argument implied by the differenciability of ∂tµφols (d) /∂d with respect to d (cf. Davidson

1994, p. 340, and Velasco and Robinson, 2000). The result follows just by noticing that

T 1/2
³
d̂− (1− c)

´
is Op (1) and therefore ∂t

µ
φols

(d) /∂d
³
d̂− (1− c)

´
= op (1) .

The proof for the case where a deterministic trend is included can be constructed along the

same lines.¥

Proof of Theorem 3

Under the alternative hypothesis, the tφ̂ols statistic can be written as,

tφ̂ols
=

P
∆ytεt−1/T

T−1/2
µµP³

∆yt − φ̂εt−1
´2
/T

¶P
ε2t−1/T

¶1/2
and therefore is easy to check that,

T−1/2tφ̂ols
p→ (d− 1)³
Γ(3− 2d)/Γ2 (2− d)− (1− d)2

´
Similarly, by the LLN, the LM statistic, standarized by T 1/2, converges to

T−1/2τT
p→
T−1X
k=1

1

k
ρk

where ρk is the correlation function of a pure FI (d− 1) . It follows that (see Baillie, 1996),

T−1/2τT
p→
r
6

π2
Γ (2− d)
Γ (d− 1)

∞X
j=1

j−2(2−d).¥
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APPENDIX 2

TABLE A2a

Critical Values

DGP:∆yt = εt; RM 1: ∆yt = α1 + α2τ t−1(d) + α3τ t−1 (d− 1) + φ∆d1yt−1 + et

T T = 100 T = 400 T = 1000

d1 / sig.lev. 90% 95% 99% 90% 95% 99% 90% 95% 99%

0.05 -3.277 -3.583 -4.211 -3.219 -3.524 -4.076 -3.094 -3.488 -4.006

0.10 -3.179 -3.478 -4.059 -3.116 -3.418 -4.021 -3.006 -3.360 -3.877

0.15 -3.036 -3.357 -3.985 -2.993 -3.325 -3.880 -2.931 -3.252 -3.759

0.20 -2.947 -3.157 -3.835 -2.869 -3.124 -3.769 -2.784 -3.101 -3.643

0.25 -2.792 -3.014 -3.765 -2.739 -2.993 -3.674 -2.731 -2.975 -3.548

0.30 -2.670 -2.895 -3.619 -2.597 -2.889 -3.504 -2.481 -2.882 -3.433

0.35 -2.576 -2.716 3.564 -2.468 -2.806 -3.398 -2.303 -2.781 -3.352

0.40 -2.469 -2.695 -3.432 -2.340 -2.653 -3.261 -2.214 -2.600 -3.247

0.45 -2.315 -2.586 -3.320 -2.226 -2.565 -3.229 -2.049 -2.441 -3.148

0.50 -2.202 -2.428 -3.183 -2.086 -2.402 -3.050 -1.974 -2.318 -2.978

0.55 -2.100 -2.282 -3.222 -1.847 -2.370 -3.021 -1.751 -2.279 -2.930

0.60 -2.009 -2.182 -3.001 -1.758 -2.116 -2.881 -1.621 -2.164 -2.994

0.65 -1.807 -2.102 -2.849 -1.666 -2.188 -2.811 -1.563 -1.981 -2.708

0.70 -1.753 -2.015 -2.757 -1.629 -2.056 -2.735 -1.524 -1.971 -2.673

0.75 -1.641 -1.962 -2.644 -1.568 -1.982 -2.630 -1.448 -1.969 -2.617

0.80 -1.563 -1.833 -2.564 -1.492 -1.902 -2.554 -1.376 -1.759 -2.501

0.85 -1.491 -1.750 -2.505 -1.341 -1.760 -2.495 -1.331 -1.758 -2.446

0.90 -1.441 -1.702 -2.437 -1.293 -1.750 -2.428 -1.292 -1.705 2.418

0.95 -1.381 -1.682 -2.388 -1.283 -1.710 -2.372 -1.279 -1.280 -2.331
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TABLE A2b

Critical Values

DGP:∆yt = εt; RM 2: ∆yt = α1τ t−1(d) + φ∆d1yt−1 + et

T T = 100 T = 400 T = 1000

d1 / sig.lev. 90% 95% 99% 90% 95% 99% 90% 95% 99%

0.05 -2.508 -2.808 -3.508 -2.468 -2.751 -3.360 -2.516 -2.826 -3.383

0.10 -2.424 -2.762 -3.424 -2.406 -2.676 -3.276 -2.404 -2.703 -3.296

0.15 -2.311 -2.665 -3.311 -2.318 -2.641 -3.241 -2.334 -2.651 -3.160

0.20 -2.217 -2.542 -3.217 -2.214 -2.511 -3.111 -2.168 -2.497 -3.086

0.25 -2.099 -2.380 -3.099 -2.108 -2.419 -3.033 -2.104 -2.434 -3.055

0.30 -1.994 -2.344 -2.994 -1.951 -2.296 -2.940 -1.980 -2.296 -2.904

0.35 -1.885 -2.242 -2.885 -1.880 -2.190 -2.977 -1.816 -2.158 -2.777

0.40 -1.801 -2.1267 -2.801 -1.734 -2.070 -2.749 -1.677 -2.001 -2.625

0.45 -1.724 -2.082 -2.724 -1.640 -1.999 -2.687 -1.628 -1.974 -2.673

0.50 -1.623 -1.971 -2.643 -1.514 -1.886 -2.569 -1.537 -1.872 -2.575

0.55 -1.540 -1.913 -2.596 -1.486 -1.840 -2.541 -1.430 -1.781 -2.467

0.60 -1.456 -1.821 -2.525 -1.408 -1.743 -2.511 -1.366 -1.769 -2.423

0.65 -1.449 -1.811 -2.483 -1.370 -1.730 -2.448 -1.345 -1.751 -2.469

0.70 -1.422 -1.815 -2.439 -1.347 -1.746 -2.403 -1.314 -1.696 -2.393

0.75 -1.353 -1.793 -2.393 -1.347 -1.699 -2.386 -1.307 -1.676 -2.357

0.80 -1.341 -1.736 -2.371 -1.296 -1.681 -2.351 -1.336 -1.669 -2.342

0.85 -1.310 -1.694 -2.350 -1.290 -1.682 -2.339 -1.335 -1.673 -2.337

0.90 -1.298 -1.664 -2.347 -1.305 -1.651 -2.338 -1.324 -1.649 -2.343

0.95 -1.257 -1.654 -2.337 -1.266 -1.643 -2.406 -1.262 -1.642 -2.3339
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