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ABSTRACT. Three methods are proposed for constructing reference prior densities
for certain biparametric distribution families. These densities represent approximations
to the Bayesian goncept of noninformative distribution,

1. INTRODUCTION

Attempts to obtain noninformative prior distributions have been made by
Jeffreys (1961), Hartigan (1964), Novick and Hall (1965), Jayhes (1968, 1983),
Box and Tiao (1973), Villegas (1977, 1981), Zellner (1977), Akaike (1978) and
Bernardo (1979). Basically, the idea is to obtain probability distributions that
allow data to speak for themselves.

We propose three methods for constructing reference densities for certain
biparametric families of prior distributions. These densities represent ap-
proximations to the Bayesian concept of noninformative distribution.

The first of these methods just uses the concept of prior distribution,
whilst the remaining two in addition use the likelihood function.

Sections 2, 3 and 4 describe the methods., Each section consists of an
introductory example, a definition and its formal application to the example.

Section 5 describes some applications, and shows the differences between
our methods and those of Jeffreys, which historically is the first, and
Bernardo, the most widely applicable, Section 6 offers possible generaliz-
ations,

2. METHOD 1

Let us introduce this method by considering the following example.
Suppose that someone is going to observe a random variable whose
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probability distribution depends on a fixed parameter 8 for which there is
only partial information. The person in question decides to represent his
information regarding # by means of a prior subjective probability
distribution 7. In the design of his prior he has help from a statistician.
Suppose that the statistician, alter asking him certain questions, concludes
that the prior = must be a normal distribution and that he now just needs to
determine its two parameters, u and 72,

In order to find the mean, yu, the statistician will possibly ask his client to
indicate a number u; which he believes could be close to the parameter 6, and
g will then be given this value. In order to determine the variance 72, the
statistician will ask his client to define his degree of trust in the conjecture.
This, in other words, is equivalent to asking about its precision or «informa-
tive strength», The statistician will determine the prior variance by using the
general criterion that the smaller the precision or informative strength of the
guess the greater has to be the dispersion of the subjective variable # about g,.
{The way to determine the variance can at first be difficult to perfect, but this
is a point that does not interest us at this point).

If we feel the statistician’s approach is reasonable, we are tacitly accepting
that between two normal distributions with the same mean, the one with the
greater variance is less informative, In this respect, the noninformative
distribution amongst the normal distributions with a given mean, u,, will be
that with maximum variance. This maximum variance distribuiion does not
exist in the sub-family of normal distributions with mean g, but it does exist
on the «edge» of the subfamily: it is the improper uniform distribution along
the whole of the real line. However, it is obvious that the same distribution is
reached no matter the value of u, assigned to the mean. Hence, the nonin-
formative distribution amongst the normal distributions is the improper
uniform distribution in R.

The generalization and formalization of this question gives rise to the
following definition:

Defitinion 1

Let ¥ =[m, ,(8)] be a family of prior densities, the parameter a being a
measure of centralization which varies in a subset A of R, and the parameter
s being a measure of dispersion which, for each fixed value of a, varies within
an interval S{a)=(s,(a), s;(a)}, where s, (a) can be infinite. Let us suppose
that, for all the values of a, the (improper) limiting densities corresponding
to a and s, (a) are all equal (up to a multiplicative constant that could depend
on a). We. will refer 1o this common limiting density as the reference
density 1 of the family 5 with respect to the parametrization we have used.
L]
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We will consider that Definition 1 can also be applied to that case in
which the parameter s it not a dispersion measurement but a measurement of
concentration or precision. The reference density would then correspond to
the value s, {a) instead of s, (a).

In order to formalize the concept of limit that appears in Definition 1, we
will accept that any density m, ; of the family .5 is continuous and positive at
a and we define

a5 (6)
Trﬂ, 5 (a) .

The family % ={p,(0)} behaves in Bayesian analysis just like the %
family. If for each value of 4 there exists the limit function

Pas(0)=

p*(0)= lif'n” Pa,s(6)
S-v.fj o,

and p*(8) is independent of a (up to a multiplicative constant), then the
reference density I exists and is any (improper) density independent of a and
proportional to p* (8).

Definition 1 can now be formally applied to our first example. For this,
let us consider the family % of normal densities with mean 4 and standard
deviation 5. We have ac A=R and s€ S (a)=(0, +ec). We calculate p, ,(0),
for any m, ((8)€ %, and then p*(8):

1[08—al?
pa,s(e)=exp{—7[ : H

p¥(8)=1im p, (8)=1.

Since this limit is independent of g, we can take the improper density
m(6)=1 as the reference density 1.

3. METHOD 2

As in the previous section, we introduce the method by analyzing a
particular case. Let us suppose that we have a prior distribution N (u,, 7,)
and we observe a sample of size n from a random variable N(8, v2), the
variance o2 being known. It is known (see DeGroot (1970), p. 167) that the
mean value, y,, of the posterior distribution is

o? nte

x, (D

M= o
ol+nrd o2+n7}

where % represents the sample mean.
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-If we have accepted the procedure of the preceding section as, being
reasonable we have. accepted that the prior mean p, represents the best initial
conjecture regardmg the parameter 6. However, the present. posterior
distribution can serve as prior distribution for future experiments. Hence, the
posterior mean u, represents the best present conjecture regarding 6.
Expression .(1) shows_ this,present conjecture as. a function .of the prior
COnJecture ,ua,and of the sample data (as well as 72). ., \

If, in (1), we make 77 =+9o0, we have u, =%, independently of u,. In this
case, the final conjecture will be the same, no matter the value ascribed to the
initial one. The initial conjecture has not been taken into consideration. By
making 77 —=+co we are annulling the informative strength of the prior
conjecture : The corresponding distribution, the i lmproper umform dlStI’lbuthﬂ
in R, is therefore noninformative in this case. " - o : b

We can therefore state thé following definition:

Definition 2
- Let ¥ ={m;,(8)} bea Samily of prior densities, the parameter a being a
measure of centralization. Let & be'a family of likeliiood funcnons f(x/a)

Let us consider-the posterior centralization parameter a as bemg a function of
the prior parameters, of the sample observed and of its size.' Finally, let us
assume that there is a4 certain (possrbly limiting) value of the prior parameter
s for which it is found that.

1 the posterior centralization parameter does not depend on the prior

centralization parameter, no matter the sample observed nor its size,

2" for all values of a, the-(impreper) densities'corresponding to a and to this
value of s are all equal each other (up 10 a multiplicative consiant that
could depend on a).

We will refer to this common denszty as the reference density II of thé family
j‘ wnh respect to the parametrazanon used and 19 the likelihood famtly “a

o f Lo ' s f - e B .ozt it

The abovc deﬂmuon particularly apphes in those cases whiere, as in-our
example]" the ‘posterior parameter ‘a:is’a weighted average “of* the ' prior
parameter g and of some statistic ‘and‘the weight of the parameter is cancélled
out by a value of the parameter s. |

Note that the parameter s now does not need to be a dispersion or
precision measurement.

y ot ; il
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In order to apply this definition to our example, let % be the family of
densities N(a,s2). Let f¢x/6) be a normal distribution N (#,¢2) with a known
value of 2. Indicating the prior parameters by a subindex 0 and the posterior
parameters by a subindex 1, we have

2

o ns2

a;= a 2

o2+ns? °  o2+ns? @
For 5,=+cc we obtain a, =%, irrespective of a,. Hence the reference density
Il is the improper density 7 (0)=1.

4. METHOD 3

Once again we shall use an example to introduce the method. Let us
suppose that a person consults a statistician in order to determine the prior
distribution of the parameter # of a random variable X with a distribution
N (8,a02), the variance ¢? being known. Let us consider the moment in which
the statistician, having decided that the prior distribution is normal and
having assigned to its mean the value u, of the conjecture supplied by his
client, attempts to assign a value to the prior variance. Let us assume that for
this, the statistician proposes to use the technique of equivalent sample sizes
(see Good (1950)}.

There are two versions of this tecnique and both, as we shall now see,
seem to be equally reasonable. The first or «classic» technique (see Berger
(1985), p. 80) compares the informative strength of the initial conjecture with
that of a future sample, and does not use noninformative distribution. The
second version, which we designed, considers the initial conjecture to have
come from a past sample, and it uses a noninformative distribution. The
noninformative distribution evidently has to be such that both methods
produce the same result, i.e., the same determination of 2.

In either case, the statistician begins by asking his client for the
«equivalent sample sizen, 1.¢., the size »# that a sample of the variable X should
be, in order to have the same informative strength regarding @ as his initial
conjecture.

If the statistician uses the first version of the technique, his reasoning will
continue as follows. If, after assigning the initial values u, and 77 to the
parameters, a sample of size n were observed, the new conjecture u, regarding
# would depend on the initial conjecture p, and on the statistic %, as shown
in formula (1). 4, is a weighted average of u, and of %, and the respective
weights are good measure of the informative strength of the initial conjecture
and of the sample. These weights depend on the value 77 assigned to the
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parameter 72, A suitable value 77 would therefore be that which makes the
two weights equal, i.e.,

o O ' )

n

On the other hand, if the statistician uses the second version of the
technique of equivalent sample size, his reasoning will be as follows. The
client behaves as if he had observed a hypothetical sample of size n from a
distribution N (8, 0?) and as if he had obtained from the sample the conjecture
i, for 8. We can assume that u, is the sample mean. The cliént’s present
information is the sum of his information prior to observing the sample (no
information}, represented by the noninformative distribution, and the
information supplied by the sample. The prior distribution, which is the one
we want to determine, has to reflect the present information and has therefore
to coincide with the posterior information corresponding to the noninformative
prior distribution and to the observation of a sample of size n and sample
mean u, We accept that the noninformative distribution.is N{u; 7). The
prior variance, which has to coincide with the variance of the present
distribution, is expressed by (see DeGroot (1970), p. 167) -

‘TO2 = . ‘ (4)
T,z 0'2

Hence, according to this second version, the prior variance has to take the
value 72 given by (4). |

The noninformative distribution has to be such that values (3) and (4) are
equal. This implies that 77 =1+o0, and the value of u, is therefore irrelevant.
The noninformative distribution is therefore the normal distribution of
infinite variance, i.e., the improper uniform distribution in R.

We state the following definition:

Definition 3

Let = {maos(8)} be a family of prior densities, the parameter a being a
measure of centralization. Let &£ be a famiiy of likelihood functions f(x[86).
Let us consider the posterior parameters a and s as functions of the prior
parameters, of the sample and of its size. Let us assume that the posterior
parameter a is a weighted average of the prior paranieter a and of some
statistic, and that the weights depend only on the prior parameter s and on the
sample size.- Let % be the value of the prior parameter s (expressed as a
Junction of the sample size} so that the two weights are equal. Let us assume
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that there exists a value (possibly limiting) of the prior parameter s for which
we find that

1 the posterior parameter s coincides with §, irrespective of the prior
parameter a, the sample observed and its size,

2 for all values of a, the (improper) densities corresg anding to a and (o this
value of s are all equal each other (up to a multiplicative constant that
could depend on a).

We will refer to this common density as reference density 111 of the family d
with respect to the parametrization used and to the likelihood family /.=

To formalize our example, we once again consider the family N (g, s2) and
the likelihood f(x/6), normal N (0,02} with a known value of o2

Equation (2) adapts to Definition 3. The value of s, for which the weights
of a, and % become equal each other is §=g: \/ﬁ

The transformation of the parameter s is expressed b

If 5,=+0o0 then S|:.§:G,"\/r_1, irrespective of the value of the prior
parameter a, the sample observed and its size. Since m, ..(0)=1, this
expression does not depend on a. Hence the reference density 1II is the
improper density m(0)=1.

5. APPLICATIONS

Let = {m,,(8)} be the family of beta densities. We can consider for
this family three distinct parametrizations. The parameter ¢ is the mean,
a=p/(p+q). in all three cases. In the first parametrization, s is the variance;
in the second, s is a precision measurement: s = p+q; while in the third, s is
a dispersion measurement whose range of variation is independent of a:
s=(p+q)'. When applying methods 2 and 3, the Bernoulli distribution is
taken as the likelihood.

All three methods can be applied to the three parametrizations, with the
exception of the first pametrization which can only take method 1 because of
the form of the parametric space. In all viable cases, the improper density
(=0 '(1—8)"'1,(0) is obtained as the reference density.
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For the beta distributions, Jeffreys and Bernardo obtain
m(0)=0""2(1—60)"""214,(6).

Let us now consider the family .% of gamma densities with mean a and
variance 5. Let the likelihood be a Poisson distribution. Methods | and 2
produce the same reference density, the improper density w(8) =875 1., ().
Method 3 cannot be applied to this case (see section 6). Jeffreys and Bernardo
procedures yield m(6)=0"" 21 1., (0).

In the normal case of known variance, all methods obtain the same
distribution: 7{6)=1.

6. GENERALIZATIONS
I. The k-dimensional case

The three methods can be extended to the k-dimensional case, when the
parameters are a set of marginal centralization measurements and a joint
dispersion measurement.

This extension can be illustrated by considering the family % of Dirichlet
densities, in which the parameters are the marginal means and the sum of the
usual parameters. Definition | can be applied to this family. If we take the
multinomial distribution as the likelihood, Definitions 2 and 3 can also be
applied. In the three cases, the improper density

% %
m(f,...,0)= _1137] (1 —_§I 07" fo.1)(0;)

is obtained as the reference density.

II. Two extensions of Definition 3

Definition 3 can also be extended by allowing the weights to depend on
a,, the value of the prior parameter a.

In this case it cannot be postulated that the posterior parameter s
coincides with § for every sample (this version of the postulate is included in
the definition for its simplicity, however it is not necessary and is too
demanding), but only for those samples in which a certain «good» estimator
of a coincides with a,, the (variable) value of the prior parameter used in the
definition of §.

The extension can be illustrated by considering the family % of gamma
densities with mean @ and variance s and the family .~ of Poisson likelihoods.
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Definition 3 cannot be applied directly because a, is not a linear function of
a,, as is shown by the transformation equation for the parameter a:

a,, S,

ay= (5)

a()+ x
a,t8,n a,+t8,n
However the same philosophy of Definition 3 can be applied.

A formal application of the first version of the technique of equivalent
sample size to formula (5) gives rise to the determination of s, as 5,=a,/n.

On the other hand, the transformation of the second parameter is
expressed by

nxsi+als,

5=
fns,+a,)

If s, is the value of the posterior paramecter s corresponding to the
noninfermative distribution gamma {a,, 5,} and to the observation of a sample
whose mean value is g, it would be expressed as

na,st+als

(ns;+a;)?

When s,= + o, then s, takes the vaiue of g,/n. Hence we can take the
improper density w(8)=8 '/, .« (6) as the reference density.

A further possible generalization of Definition 3, applied to the k-
dimensional case, consists in not postulating that the posterior parameter a,
15 a convex linear combination of a, and of the statistic, and in defining the
value § as that which makes a, equidistant from g, and the statistic,
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