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Abstract

In this paper we measure the extent of inequality of opportunity us-
ing a new parametric approach. We rely on the idea that differences
in earning can be ethically fair if they come from choices that indi-
viduals are completely responsible for, called efforts. Unacceptable
disparities are those come from external factors called circumstances.
We use a flexible parametric form to model the joint distribution of
circumstances and efforts. Our model avoids the need to break con-
tinuous variables of circumstances into groups, while also allowing for
the use of categorical variables such as gender or race. Using data
from Living Conditions Survey, we estimate the level of inequality
of opportunity in Spain in 2005. Our results are robust to different
parametric functional forms and indicators of parental education.
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1 Introduction

Income inequality has been of great interest in the economic literature, be-
ing also a sort of concern as regards redistribution policies. It is however
argued that disparities driven by different levels of efforts of individuals are

1E-mail addresses: sarabiaj@unican.es (J.M. Sarabia).
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less objectionable than those arise from differences in the characteristics of
these individuals which are exogenous to them. Among the last kind of fea-
tures we can highlight race, gender, familiar background or region, among
others. In this sense, the distribution of an specific outcome such as earn-
ings, income or wealth is not relevant itself. Instead, the differences due to
predefined circumstances are of main interest in terms of social justice. The
resulting inequalities once the circumstances have been equalized are driven
by individual choices of which individuals are totally responsible, and hence
outside the scope of policy makers.

The idea that different achievements can be ethically fair if they come
from individual choices has been repeatedly pointed out in the literature (see
e.g. Rawls, 1971; Dworkin, 1981; Cohen, 1989). Unacceptable disparities are
those come from external factors that individuals cannot control for. Roemer
(1993, 1998) formalizes of this philosophical distinction by defining ‘equal-
ity of opportunity’ as the the independence of the distribution of particular
outcomes to the exogenous characteristics of the individual. The distribu-
tion of individual achievements can be decomposed into two different factors,
namely circumstances and efforts, which would lead to two different compo-
nents of inequality of the overall outcome of interest: inequality of efforts
and inequality of opportunity.

According to Ferreira and Gignoux (2011), there are at least three reasons
why the study of equality of opportunity is of main interest in the economic
field. First of all, as regards policy design, the actions should be focused
on equalizing circumstances or at least compensating worse-off individuals
concerning determinants beyond their responsibility. On the other hand,
inequality driven by differences in efforts are socially accepted while dispar-
ities due to circumstances beyond the individual scope are ethically unfair.
Therefore, policies targeted to reduce inequalities due to this kind of factors
would receive and stronger social support. Last but not least, inequality of
opportunity seems to be more correlated with the economic performance of
the countries than overall disparities. In fact, this kind of inequality has a
negative impact on economic growth while differences fostered by effort seem
to be positively correlated with growth (Marrero and Rodriguez, 2013).

Based on the previous definition of inequality of opportunity, the distri-
butions of income for individuals with homogeneous characteristics must be
the identical. Taking this interpretation literally, inequality of opportunity
can be studied by comparing the distributions of income conditional on the
type using first order and second order dominance tests (Lefranc et al., 2008;
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2009). If no stochastic dominance relationships can be achieved, the society
is equal in terms of opportunities, so differences in outcomes would be con-
sequence of the efforts exerted by individuals. The main limitation of this
methodology is the impossibility to obtain enough large samples to estimate
conditional income distributions. This requirement limits the definition of
groups to a reduced number, making the types quite general groups of in-
dividuals. Note that once the types have been defined any differences in
income within types are attributed to effort or luck. If the set o individu-
als within a given type presents heterogeneity in terms of circumstances, we
would be overestimating the level of ‘ethically acceptable’ inequality. More-
over, stochastic dominance does not inform about the degree of inequality of
opportunity and hence it would be not possible to rank different distributions
according to this concept of disparities.

This is the reason why several studies have focused on an alternative
while less general methodology of constructing indices of inequality of op-
portunity. Within this framework two approaches can be distinguished. On
the one hand, nonparametric techniques have been used to decompose overall
inequality into differences due to external circumstances of individuals and
a second component that would represent the morally fair inequalities. The
procedure is based on the decomposition of inequality in the within and the
between components of mutually exclusive groups defined by the considered
types of individuals (see Checchi and Peragine, 2010). The results are again
heavily dependent on the number of types defined. Indeed, continuous vari-
ables such as parental education measured by years of schooling need to be
discrtized in order to apply this methodology, thus resulting in an under-
estimation of inequality of opportunity. In fact, this bias would be higher
as the number of groups decreases. In contrast, the consideration of too
many groups can lead non-representative results due to the low frequency of
observations in some of them.

An alternative approach followed by Bourguignon et al. (2007) would be
appealing when samples are not fully representative of all types, although at
cost of imposing a linear parametric form. In particular, this methodology
estimates a linear model to assess the impact of ‘effort’ and ‘circumstance’
variables on earnings. These estimates are used to build counterfactual distri-
butions that equalize circumstances across types. The comparison of inequal-
ity levels of the actual and the counterfactual distribution yield a quantifica-
tion of inequality of opportunity. The main advantage of this methodology
is that it permits to test the impact of specific circumstances controlling by
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the other factors. Its flexibility has make this approach very popular, being
one of the most widely used in empirical investigations (Bourguignon et al.
2007; Ferreira and Gignoux, 2011; Marrero and Rodriguez, 2012; 2013). The
hypothesis of a linear parametrization has been relaxed by Pistolesi (2009)
by estimating a semiparametric specification based on duration models.

This paper proposes an alternative parametric approach to assess the level
of inequality of opportunity. We use a flexible functional form to model the
joint distribution of circumstances and efforts. Our model avoids the need to
break continuous variables of circumstances into groups, while also allowing
for the use of categorical variables such as gender or race. The use of para-
metric functional forms for the study of earnings and income distributions
has been well documented in the literature (see Cowell, 2000; Slottje, 1990),
albeit it has not yet been applied to quantify inequality of opportunity. As
a model for earnings distribution, we use the generalized beta of the second
kind (GB2) (see McDonald, 1984). The GB2 is a wide family which includes
many well-known models as special or limiting cases, thus providing an ex-
cellent description of income distributions with few parameters. We obtain
closed expressions of inequality measures of the multivariate distribution to
evaluate the degree of inequality of opportunity.

The contents of this paper are as follows. In section 2 we present the
theoretical framework and the proposed parametric model used to assess
inequality of opportunity. The data used and the estimation methods are
described in Section 3. An illustration of the methodology presented in the
paper is given in Section 4. Finally, section 5 concludes.

2 Measuring inequality of opportunity

Within the framework of equal opportunities, differences in what was called
originally by Roemer (1998) advantages (income, earnings or consumption)
can come from two different sources. On the one hand, individuals exert
different levels of effort which would result in differences in income as a kind of
natural reward. In contrast, inequality can be driven by determinants behind
individual’s control called circumstances for which the individual should be
compensated (Fleurbaey, 1995) since this kind of differences are not ethically
acceptable.

Following Bourguignon et al. (2007), we will focus in this paper on the
distribution of earnings denoted by w, which are a function of factors exoge-
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nous to individuals given by circumstances (C ), the level of effort (e) and
unobservable determinants that we denote by u,

wi = f(Ci, ei, ui).

The level of effort is considered to be a continuous variable, while cir-
cumstances are made up of discrete variables which divide population into
mutually exclusive groups of homogeneous individuals. By definition, Ci are
exogenous in the model since the individual cannot choose among the set
of circumstances. Efforts are arguably influenced by circumstances, so the
previous equation can be expressed as,

wi = f(Ci, ei(Ci, vi), ui).

According to Roemer (1998), there is not inequality of opportunity if
the distribution of earnings is independent to the circumstances, F (w|C) =
F (w), where F (.) stands for the cumulative distribution function (CDF) of
earnings. This condition is known as strong equality of opportunity (Lefranc
et al., 2008). Indeed, this is a special case of equality of opportunity that
relies on first order stochastic dominance (FSD) criterion when all points
coincide.
Let c and c′ be two different circumstances, we say that c FSD-dominates
c’ iff F (w|c) ≤ F (w|c′)∀w ∈ <+ (Lefranc et al., 2008). If so, all individuals
would prefer to be characterized by the vector of circumstances c and the
distribution of w would present inequality of opportunity. Instead, if the
conditional CDF on c and c’ cross, any set of circumstances is preferred over
the other, we say that there is equality of opportunity. A less demanding
criterion based on second order stochastic dominance (SSD) is also consid-
ered by Lefranc et al. (2008). The circumstances c SSD-dominates c’ iff∫ x
0
F (w|c)dw ≤

∫ x
0
F (w|c′)dw, ∀x ∈ <+. Again, the absence of dominance

relationships based on SSD implies that the individual is not able to rank all
possible circumstances which would correspond to equality of opportunity.

The previous approach to characterize inequality of opportunity presents
two main limitations. The methodology based on stochastic dominance is not
able to rank situations when there is inequality of opportunity. On the other
hand, this methodology presents some restrictions on the empirical ground,
given that the size of the sample of the conditional distributions decreases
as the number of circumstances increases. Alternatively, we can rely on a
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weaker condition to identify differences across different vectors of circum-
stances using summary statistics of conditional distributions. In this sense,
Van de Gaer (1993) proposed the equality of conditional means as a neces-
sary condition of equal opportunities, being also congruent with the original
definition given by Roemer (1998). To assess the extent of unfair disparities,
inequality measures are computed on the distribution of conditional means,
which is equivalent to evaluate the amount of inequality that would exist in
the economy in there were no differences within each type.

We should be however cautious as regards the interpretation of these
measures. It has been repeatedly pointed out that they would represent a
lower bound of the actual level of inequality of opportunity. Ferreira and
Gignoux (2011) proved that, as long as there are unobserved circumstances
that are not taken into account in our analysis, we will be underestimating
the disparities driven by these exogenous factors. This reasoning is also ex-
tended to the partition of circumstances into more categories. Consider, for
instance, parental education. This variable can be categorized into different
educational levels or can be expressed in years, a structure that would lead no
less inequality of opportunity than the categorical one. Consequently, assess-
ments of inequality of opportunity are heavily dependent on the structure of
the data. In the nonparametric approach, only categorical circumstances are
considered in order to classify individuals into Roemerian types that brake
population into mutually exclusive groups. Continuous variables are then
categorized in order to apply this approach. While the number of categories
is totally arbitrary, it has a strong impact on the evaluation of ethically not
acceptable inequalities. Ideally, we should respect the continuous nature of
these circumstances in order to avoid any possible bias due to discretization.

However, this methodology cannot be implemented in the case of non-
parametric techniques because it would result in the definition of infinite
mutually exclusive groups.

This limitation is avoided by the parametric approach proposed by Bour-
guignon et al. (2007), which allows for the consideration of discrete and con-
tinuous variables to model the set of circumstances. This advantage comes
with the price of imposing a linear parametric structure that relates the dis-
tribution of a particular advantage with effort and circumstance variables. In
the same spirit, we also use a parametric model to estimate the extent of in-
equality of opportunity, including continuous and categorical circumstances.
In contrast to previous studies, we rely on multivariate distributions of effort
and circumstance variables to model the joint distribution of earnings.
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We start considering the joint distribution of earnings (w), effort(e) and
circumstances (C ), which is given by f(w, e, C), where w and e are univariate
variables and C is a vector of J variables. The the marginal distribution of
earnings is given by,

f(w) =

∫
<J

∫
e

f(w, e, C)dedC.

Using conditional densities, the previous equation can be rewritten in the
following form,

f(w) =

∫
<J

∫
e

f(w|e, C)g(e|C)h(C)dedC.

The previous equation is the general expression when all variables are
continuous. Consider now that we divide our vector of circumstances into P
discrete (Cd) and J − P continuous (Cc) variables. The P discrete variables
can be summarized into a single one that includes all the possible combi-
nations (say k) between the categories of the P characteristics. Then the
previous equation can be expressed as,

f(w) =
k∑
j=1

Pr(Cdj)

∫
<J−P

∫
e

f(w, e, Cc|Cd)dedCc.

where Pr(Cdj) is the probability of being characterized by the vector of
circumstances Cdj .

Our methodology relies on parametric distributions to model f(w, e, Cc|Cd).
In the standard nonparametric framework, all possible circumstances are
included in Cd, which defines mutually exclusive groups (types) and then
f(w) =

∑k
j=1 Pr(Cdj)f(w, e|Cd), where the conditional distribution of effort

on the circumstances is independent across types. Our methodology permits
the inclusion of continuous variables in the analysis, which makes the condi-
tional distribution of effort on discrete circumstances no longer independent.

Let Xi, i = 1, . . . , P be the distribution of earnings for a given type i,
i.e. conditioned to belong to some vector of discrete characteristics. Our
methodology relies on the GB2 family to model the conditional distributions,

Xi ∼ GB2(ai, p0, qi, σi), i = 1, 2, . . . , P.

A description of the different parametric distributions used in the paper
is included in the Appendix.
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This family seems to be particularly suitable to model income distribu-
tions given that it contains several parametric models used to fit income
variables, including the beta 2, the Singh-Maddala and the Dagum distribu-
tions (Bresson, 2009; Hajargasht et al., 2012, Chotikapanich et al., 2012).

The conditional distributions of earnings on discrete circumstances are
driven by two different components: the distribution of effort within that type
(ei) and the distribution of continuous circumstances (cc), which are common
to all types. To consider this structure, we use the following representation
of the GB2 distribution,

Xi = σi

(
cc
ei

)1/ai

, i = 1, 2, . . . , P, (1)

where cc, e1, . . . , eP are mutually independent gamma random variables
with distributions cc ∼ Ga(p0) and ei ∼ Ga(qi), i = 1, 2, . . . , P . Note that the
continuous circumstances are common to all types, but their influence on the
conditioning distribution (Xi) may differ across groups due to the different
value of the parameter ai.

The common variable cc introduces the dependence in the model, so we
can model the multivariate distribution of earnings of all types as follows,

(X1, X2, . . . , XP )> =

(
σ1

(
cc
e1

)1/a1

, σ2

(
cc
e2

)1/a2

, . . . , σm

(
cc
eP

)1/aP
)>

,

(2)
where ai, σi > 0, i = 1, 2, . . . , P .

These classes of multivariate distributions will be constructed using “vari-
ables in common” techniques (see, Balakrishnan and Lai, 2009). The idea
of this methodology is to construct pairs of dependent random variables
from three or more random variables2. In many situations these initial ran-
dom variables are independent, but occasionally they may be dependent.
In our case, the functions connecting these random variables are given by
(19), where all the pairs of random variables share the same numerator or
denominator.

2This methodology has been used recently for constructing multivariate dependent beta
(Olkin and Liu, 2003), Student t (Fang et al., 1990; Jones, 2002), Marshall-Olkin (Sarhan
and Balakrishnan, 2007) and F (El-Bassiouny and Jones, 2009) distributions (see Sarabia
and Gómez-Déniz, 2008).
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Theorem 1 The joint probability density function (PDF) of the multivariate
random variable (2) is given by,

fX1,...,XP
(x1, . . . , xP ) =

Γ

(
p0 +

P∑
i=1

qi

)
Γ(p0)

P∏
i=1

Γ(qi)

·

P∏
i=1

ai
σi
·
(
xi
σi

)−aiqi−1
[
1 +

P∑
i=1

(
xi
σi

)−ai]p0+q1+···+qP , (3)

if xi > 0, i = 1, 2, . . . , P and 0 elsewhere.

Proof: See Appendix.

It is possible to define a second version of a multivariate GB2 distribution,
where now the shape parameter q0 is fixed. the conditional distributions of
each type are given by,

Xi ∼ GB2(ai, pi, q0, σi), i = 1, 2, . . . , P.

Accordingly, we define the multivariate P -dimensional random variable,

(X1, X2, . . . , XP )> =

(
σ1

(
e1
cc

)1/a1

, σ2

(
e2
cc

)1/a2

, . . . , σP

(
eP
cc

)1/aP
)>

,

(4)
where ei ∼ Ga(pi), i = 1, 2, . . . , P and cc ∼ Ga(q0). The common random
variable cc introduces the dependence in the multivariate random variable.

Theorem 2 The joint PDF of (4) is given by,

fX1,...,XP
(x1, . . . , xP ) =

Γ

(
q0 +

P∑
i=1

pi

)
Γ(q0)

P∏
i=1

Γ(pi)

·

P∏
i=1

ai
σi

(
xi
σi

)aipi−1
[
1 +

P∑
i=1

(
xi
σi

)ai]q0+p1+···+pm , (5)

if xi > 0, i = 1, 2, . . . , P and 0 elsewhere.

Proof: See Appendix.

To investigate the level of inequality of opportunity we need to distinguish
between differences due to effort and whose are driven by circumstances.
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With this aim, we need to use an additively decomposable inequality mea-
sure by population subgroups in order to distinguish these two components
of overall inequality independently. Among the range of inequality measures
only the Generalized Entropy family has this characteristic. In line with
previous studies, we rely on the Theil-0, also called MLD index, which in
addition of being additively decomposable, presents several appealing prop-
erties for the study of inequality of opportunity3. This inequality index can
be generally expressed as,

T0(X) = −E
[
log

(
X

µX

)]
, (6)

where µX = E(X). For the decomposition of earnings inequality into inequal-
ity of opportunity and inequality of efforts, we will use the following lemmas,
which presents the Theil 0 index for the GB2, the GG and the inverted GG
distributions.

Lemma 1 Let X ∼ GB2(a, p, q, b) be a GB2 distribution. Then, the Theil
index is given by (q > 1/a)

T0(X) = −ψ(p)− ψ(q)

a
+ log

Γ(p+ 1
a
)Γ(q − 1

a
)

Γ(p)Γ(q)
, (7)

where ψ(z) = Γ′(z)/Γ(z) denotes the digamma function.

The Theil-0 index for the GG and the inverted GG distributions are given
in the following result.

Lemma 2 Let X ∼ GG(a, p, b) be a GG distribution. Then, the Theil index
is given by,

T0(X) = −ψ(p)

a
+ log

Γ(p+ 1
a
)

Γ(p)
, (8)

Now, let X̃ ∼ IGG(a, p, b) be a inverted GG distribution. If p > 1/a, the
Theil index is given by,

T0(X̃) =
ψ(p)

a
− log

Γ(p− 1
a
)

Γ(p)
, (9)

where ψ(z) = Γ′(z)/Γ(z) denotes the digamma function.

3The main advantage of this measure for the study of inequality of opportunity is its
property of path-independent decomposition (Foster and Shneyerov, 2000).
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The proof of Lemma 1 can be found in Jenkins (2009) and the proof of
Lemma 2 in Sarabia et al. (2015).

Using the stochastic representations (2 and 4), we decompose earning
inequality into four components.

Theorem 3 Assume that earnings w can be decomposed into P mutually
independent groups X1, . . . , XP , such that fW (w) =

∑P
i=1 πifXi

(w), where

πi ≥ 0 and
∑P

i=1 πi = 1. For the random variables Xi, assume the common
factor model,

Xi = σi

(
cp0
eqi

)1/ai

, i = 1, 2, . . . , P,

where cp0 ∼ G(p0), eqi ∼ G(qi), i = 1, 2, . . . , P are independent gamma
random variables with p0 > 0 and σi, qi > 0, i = 1, 2, . . . , P .

Then, the Theil-0 index of w can be decomposed in the following as,

T0(X) =
P∑
i=1

πiT0(e
−1/ai
qi

) +
P∑
i=1

πiT0(c
1/ai
p0

)−

−
P∑
i=1

πi log
E(c

1/ai
p0 )

E(c)
−

P∑
i=1

πi log
E(e

−1/ai
qi )

E(Ỹ )
, (10)

where T0(e
−1/ai
qi ) and T0(c

1/ai
p0 ) represent the Theil-0 indices of a IGG(ai, qi, 1)

and a GG(ai, p0, 1) random variables, given in (9) and (8) respectively, and

E(c) =
P∑
i=1

πiE(c1/aip0
) =

P∑
i=1

πi
Γ(p0 + 1

ai
)

Γ(p0)
,

and

E(ẽ) =
P∑
i=1

πiE(e−1/aiqi
) =

P∑
i=1

πi
Γ(qi − 1

ai
)

Γ(qi)
.

Proof: See Appendix.

The first term in (10) represent the “inequality of efforts”, which does not
consider any disparities driven from the circumstances. Assuming that effort
can be modeled as a residual component, in the sense that it represents the
part of earnings variability that is not captured by the circumstances, this
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term informs about the inequality within each type once the effect of circum-
stances is removed. The second and the third terms in (10) represent the
part of “inequality of opportunity” driven by the continuous circumstances.
The first component informs about earning disparities due to inequality in the
continuous circumstance within types. the second component, instead, corre-
sponds to earning inequality derived by differences in opportunities between
types. The last term in (10) informs about the “inequality of opportunity”
due to discrete circumstances, once the effect of continuous circumstance has
been removed.

3 Data and estimation strategy

We use data from Living Conditions Survey (LCS) collected by the Spanish
Statistical Office. This survey is conducted annually since 2004 collecting
data on socio-demographic variables. Unfortunately, the year 2005 is the
only one that contains information about individual’s background which is
used in the literature of inequality of opportunity to model the exogenous
circumstances 4. The LSC sample size in 2005 was 30375, but we restrict our
sample to individuals between 25 and 65 (both included) who had positive
earnings during 2004, which leads a sample of 16447 individuals. Due to
missing observations in other relevant variables related with circumstances
(gender, parental education and country of birth) our sample is further re-
stricted to 8282 individuals.

Following previous studies, we use annual gross earnings as a measure of
advantage (see Checchi and Peraigne, 2010; Sapata,2009). As regards cir-
cumstance variables, the data set has available tree kind of circumstances: (i)
gender, (ii) country of birth and (iii) parental education. Table 1 presents in-
formation about the categories of each of these variables and their associated
proportion.

The first two variables belong to the purely discrete set of circumstances
(Cd). Parental education also presents a discrete structure, but is usually
considered as a continuous variable in the parametric approach. The cate-

4In 2011, a new wave of the special module of inter-generational poverty is also available.
However, the structure of the data regarding the categories of parental education and other
variables of circumstances is fairly different from the data in 2005 and the results would
be substantially affected by the different categorization of circumstances (Ferreira and
Gignoux, 2011).

12



Table 1: Descriptive statistics
Variable Description Mean / proportion
Earnings Annual gross earnings 21264.0311
Gender Male 0.5717

Female 0.4283

Mother’s Education Less than primary 0.2370
Primary 0.6073

Lower Secondary 0.0697
Upper Secondary 0.0442
Post-secondary 0.0027

Tertiary 0.0391

Father’s Education Less than primary 0.1941
Primary 0.5529

Lower Secondary 0.0676
Upper Secondary 0.0601
Post-secondary 0.0051

Tertiary 0.0923

Highest educational Less than primary 0.5739
level of the couple Primary 0.0762

Lower Secondary 0.0694
Upper Secondary 0.0060
Post-secondary 0.0060

Tertiary 0.1079

Country of birth Spain 0.9367
Other country 0.0633

13



gorical variable is transformed into a cardinal indicator by giving the same
numbers of years of schooling to individuals that belong to the same category
(see e.g. Bourguignon et al., 2007). The main limitation is the assumption of
a linear relationship between the advantages and the circumstances 5. Our
analysis relies on an alternative parametric specification which provides us
with an statistical framework that explicitly addresses the dependence be-
tween circumstances and advantages. We use the representation of the GB2
as a ratio of gamma distributions (Eq.(1)), modeling parental educational
achievements as a continuous circumstance. The relationship between ef-
forts and circumstances is explicitly addressed by this representation and
no subjective choices need to be made. However, two requirements must
to be satisfied to ensure the accuracy of the estimates. On the one hand,
the GB2 family should be an adequate model for distribution of earnings
of each type. Indeed, this distribution is particularly well-suited to model
income and earnings distributions (see Kleiber and Koltz, 2003; McDonald,
1984). Secondly, the Gamma distribution should fit adequately the educa-
tional outcomes of the country. This statement has been barely investigated
in the literature. The distribution of education has been principally stud-
ied relying on non-parametric techniques, using the official duration of each
educational stage to transform educational achievements into a numerical in-
dicators. On the other hand, duration models have been used to investigate
the probability of dropping out school (see e.g. Arulampalam et al., 2004
Plank et al., 2005). We take a similar approach in this study, but instead of
focusing only on dropout patterns, we investigate the time until leaving the
educational system independently of the reason. Then, education is repre-
sented by the variable time that individuals attend the school until leaving
the educational system. This approach is applied by Jordá (2015), using a
general model, which includes the gamma distribution as special case. The
results point out an outstanding performance of the continuous approach
which fits particularly well the distribution of educational outcomes.

For the estimation purposes, denote earnings by w. The individuals are
classified into four mutually exclusive groups: Spanish males X1; foreign
males X2; Spanish females X3 and foreign females X4. Then, we can write
f(w|Cd) =

∑4
i=1 πifXi

(x|Cd), where πi ≥ 0, i = 1, 2, 3, 4 and
∑4

i=1 πi = 1
is the proportion of the ith type. The sample size of each category will be

5An alternative nonlinear specification based on semiparametric duration models is
assumed by Pistolesi (2009)
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n× πi = ni, i = 1, 2, 3, 4.
The second kind of circumstances is given by parental education. Given

that we have information for both parents, we have considered three different
possibilities: father’s years of schooling (Lefranc et al., 2008), mother’s years
of schooling and the maximum years of education in the couple (Checchi and
Peragine, 2010). According to previous discussions, the education variable
is modeled as a parametric continuous random variable given by the gamma
distribution. The gamma distribution will be denoted by cc ∼ G(α, σ), where
α ≥ 0 is the shape parameter and σ ≥ 0 the scale parameter.

Then, the data consist in pairs of observations (xij, wij)|cc, with j =
1, 2, . . . , ni, i = 1, 2, 3, 4, where xij are the annual gross earnings of the jth
individual belonging to group ith, with sample weights wij and conditional
to the educational attainment cc.

We proceed in two steps: estimation of parental education and estimation
of earnings for different types.

Step 1 We estimate the distribution of parental education by weighted non-
linear least squares (WNLS) fitting,

(α, σ)|cc = argmin
α,σ

4∑
i=1

ni∑
j=1

πiwij

{
F̃ij − FG(α,σ)(xij;α, σ|cc)

}2

, (11)

where F̃ij is the value of the empirical CDF and

FG(α,σ)(xij;α, σ|cc) =

∫ xij |cc

0

tα−1e−t/σ

σαΓ(α)
dt

is the theoretical CDF of the gamma distribution. The initial estimates of
the parameters are,

α̂init = m2
ij/s

2
ij,

σ̂init = s2ij/mij,

where mij and s2ij are the sample mean and variance, respectively.

Step 2 Estimation of earnings for each type. We assume that Xi|cc ∼
GB2(a, p0, q, b) and Xi|cc ∼ GB2(a, p0, q, b), where p0 is estimated from the
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education distribution in Step 1. For the first model, the log-likelihood is
given by,

log `(a, q, b|cc) =

ni∑
j=1

wij log fGB2(xij; a, p0, q, b|cc), i = 1, 2, 3, 4, (12)

which can be written as,

log `(a, q, b|cc) = wi+(log Γ(p0 + q) + log a) + (ap0 − 1)

ni∑
j=1

wij log xij

−wi+(ap0 log b+ log Γ(p0) + log Γ(q))−

−(p0 + q)

ni∑
j=1

wij log (1 + (xij/b)
a) ,

where wi+ =
∑ni

j=1wij.
If we denote by θ = (a, q, b) the vector of the parameters and the deriva-

tive of log Γ(x) by ψ(x), the digamma function, the components of the score
vector U(θ) are given by,

Ua(θ) =
wi+
a

+ p0

ni∑
j=1

wij log
(xij
b

)
− (p0 + q)

ni∑
j=1

wij log
(xij
b

)[( b

xij

)a]−1
(13)

Uq(θ) = wi+ψ(p0 + q)− wi+ψ(q)−
ni∑
j=1

wij log
[
1 +

(xij
a

)a]
, (14)

Ub(θ) = −wi+ap0
b

+
(p0 + q)a

b

ni∑
j=1

[
1 +

(
a

xij

)a]−1
. (15)

The initial estimates can be obtained from the moment estimates of the
Fisk distribution.

The Fisher information matrix of the GB2 with complete information was
obtained by Brazaukas (2002), and can be adapted easily to our model. Note
that this distribution is a regular family in terms of the maximum likelihood
estimation and we may use the expression,

I(θ) = −E
(
∂2 log `

∂θi∂θj

)
ij

.

For the estimation of the model Xi|cc ∼ GB2(a, p, q0, b) we proceed in a
similar way.
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4 Results

The results corresponding to the estimation of the models based on the
GB2(a, p0, q, b) (p0 fixed) and GB2(a, p, q0, b) (q0 fixed) distribution are given
in Tables 2 and 3. For each two models, we have fitted the earnings distribu-
tion X (with p0 or q0 fixed respectively) according to the four types X1, X2,
X3 and X4, conditionally to the three different definitions of parental educa-
tion (father’s years of schooling, mother’s years of schooling and combined).
These tables include the parameter estimates and the standard errors (in
parentheses) using the previous parametric models.

We have compared both models using the Akaike information criterion
(AIC), defined by (Akaike 1974),

AIC = −2 log `+ 2d,

where log ` = log `(θ̂) is the log-likelihood of the model evaluated at the
maximum likelihood estimates and d is the number of parameters. We chose
the model with the smallest value of AIC statistic. We have also included
the BIC statistics, and in this case we chose that model with highest value.

For all the estimations, the parameters of the two GB2 are significant.
If we compare both models, the GB2(a, p0, q, b) distribution outperforms the
GB2(a, p, q0, b) distribution, in terms of the statistics AIC and BIC (see Ta-
bles 2 and 3). On the other hand, if we compare the estimation in terms of the
three education indicators, the estimations based on the years of education
of the father outperforms the other two estimations.

In order to check graphically the adequacy of the GB2 models to the
data sets, we have obtained the corresponding PP-plots for each set of data.
Figure 4 corresponds to the plots of the empirical CDF of earnings versus
the theoretical cumulative distribution from GB2b model (with q0 fixed),
considering fathers years of schooling for each type: Spanish males (X1);
foreign males (X2); Spanish females (X3) and foreign females (X4), in the
year 2005.6. The results reveal an outstanding performance of the GB2 model
in terms of goodness of fit. The accuracy is specially high for the types
Spanish males and Spanish females.

The results of inequality decomposition for the two parametric functional
forms considered in this study are presented in Table 5. We include the four

6The rest of the PP-plots (with p0 fixed, and also considering mothers years of schooling
or the maximum years of education in the couple), are available upon request
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Table 2: Estimation of the generalized beta distribution GB2(a, p0, q, b) (p0
fixed) according to the four groups X1, X2, X3 and X4 and the three edu-
cation classifications. Parameter estimates, standard errors (in parentheses)
and AIC and BIC statistics. Year 2005

Father Education
X1 X2 X3 X4

a 3.33198 6.03276 1.80824 2.94472
STD(a) (0.00247) (0.01213) (0.0014) (0.00632)

q 0.99560 0.435511 3.21570 1.31758
STD(q) (0.00158) (0.00133) (0.01112) (0.00699)

b 17701.0 12021.8 25614.0 10557.5
STD(b) (11.4531) (8.06013) (65.9501) (26.0693)
p0 1.47485 1.47485 1.47485 1.47485

AIC 1.116 · 108 1.330 · 107 7.745 · 107 9.407 · 106

BIC −5.583 · 107 −6.651 · 106 −3.873 · 107 −4.704 · 106

Mother Education
X1 X2 X3 X4

a 3.05599 5.56383 1.62810 2.75148
STD(a) (0.00228) (0.01086) (0.00128) (0.00578)

q 1.11573 0.48552 3.98653 1.51699
STD(q) (0.00182) (0.00146) (0.01509) (0.00814)

b 17361.1 11849.1 28073.8 10718.6
STD(b) (11.8464) (7.91982) (85.5624) 27.3864
p0 1.70240 1.70240 1.70240 1.70240

AIC 1.138 · 108 1.393 · 107 7.947 · 107 1.053 · 107

BIC −5.688 · 107 −6.965 · 106 −3.974 · 107 −5.263 · 106

Combined
X1 X2 X3 X4

a 3.34048 5.99607 1.79763 3.03034
STD(a) (0.00245) (0.01175) (0.00138) (0.00621)

q 0.98767 0.44639 3.24677 1.31537
STD(q) (0.00155) (0.00133) (0.01109) (0.00662)

b 17627.1 12180.7 25779.0 10736.9
STD(b) (11.1699) (8.03352) (65.9045) (24.3667)
p0 1.47887 1.47887 1.47887 1.47887

AIC 1.152 · 108 1.411 · 107 8.024 · 107 1.075 · 107

BIC −5.759 · 107 −7.056 · 106 −4.012 · 107 −5.377 · 106

Sample size 4448 286 3309 238

18



Table 3: Estimation of the generalized beta distribution GB2(a, p, q0, b) (p0
fixed) according to the four groups X1, X2, X3 and X4 and the three edu-
cation classifications. Parameter estimates, standard errors (in parentheses)
and AIC and BIC statistics. Year 2005

Father Education
X1 X2 X3 X4

a 2.67179 2.40897 2.67861 2.76935
STD(a) (0.00157) (0.00358) (0.00247) (0.00683)

p 1.89199 7.26929 0.87302 1.58725
STD(p) (0.00333) (0.06962) (0.00167) (0.01070)

b 18580.3 7920.2 20122.5 10732.7
STD(b) (16.7252) (40.2710) (19.5431) (35.8548)

q0 1.47485 1.47485 1.47485 1.47485
AIC 1.117 · 108 1.337 · 107 7.746 · 107 9.407 · 106

BIC −5.585 · 107 −6.683 · 106 −3.873 · 107 −4.704 · 106

Mother Education
X1 X2 X3 X4

a 2.43584 2.19008 2.46942 2.61408
STD(a) (0.00143) (0.00322) (0.00229) (0.00598)

p 2.17530 9.76710 0.96155 1.77616
STD(p) (0.00394) (0.10902) (0.00187) (0.01128)

18517.1 6969.9 20916.3 11086.4
STD(b) 18.2028 (44.3017) 21.0745 35.5396

q0 1.70240 1.70240 1.70240 1.70240
AIC 1.138 · 108 1.400 · 107 7.947 · 107 1.053 · 107

BIC −5.690 · 107 −6.999 · 106 −3.974 · 107 −5.264 · 106

Combined
X1 X2 X3 X4

a 2.65758 2.45217 2.67249 2.85975
STD(a) (0.00154) (0.00354) (0.00242) (0.00633)

p 1.92142 6.75630 0.87083 1.56561
STD(p) (0.00335) (0.05954) (0.00163) (0.00935)

b 18463.3 8352.4 20178.3 11016.8
STD(b) (16.5382) (38.6060) (19.2018) (31.5152)

q0 1.47887 1.47887 1.47887 1.47887
AIC 1.152 · 108 1.418 · 107 8.024 · 107 1.075 · 107

BIC −5.761 · 107 −7.089 · 106 −4.012 · 107 −5.377 · 106

Sample size 4448 286 3309 238
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Table 4: PP-plot: Empirical Cumulative Distribution of Salary versus The-
oretical Cumulative Distribution from GB2b model (q0 fixed), considering
fathers years of schooling, for Spanish males (X1); foreign males (X2); Span-
ish females (X3) and foreign females (X4). Year 2005.
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components of Eq. (10): IE denotes inequality of efforts which would corre-
spond to the within-group inequality of the specific component. IO(1) is the
between-type earnings inequality due to parental education, IO(2) informs
about the amount of inequality driven by mean differences in parental edu-
cation among the four types considered in this study and IO(3) is the part
of inequality driven from differences in earnings between types. The results
point out that the proportion of inequality due to individuals responsibility
varies between 33 to 38 percent. This proportion seems to be rather insen-
sitive to the variable used to measure parental education, specially for the
model given in (4). The main contribution to inequality of opportunity is
given by differences in parental education which account for half of the total
inequality of earnings. Finally, inequality of opportunity due to differences
in gender and country of birth represent a residual part which varies between
7 and 10 percent depending on the model considered.

5 Conclusions

Within the framework of inequality of opportunity, disparities driven by fac-
tors beyond the individuals’ control are ethically unfair. On the other hand,
inequality that comes from factors that individuals are responsible for are
socially accepted. According to this distinction, The distribution of indi-
vidual achievements can be decomposed into two different factors, namely
circumstances and efforts, which would lead to two different components of
inequality of the overall outcome of interest: inequality of efforts and in-
equality of opportunity. In this paper we present an alternative parametric
model, that relies on a flexible functional form to model the joint distribution
of circumstances and efforts. The model avoids the need to break continu-
ous variables of circumstances into groups, while also allowing for the use of
categorical variables. Moreover, the proposed methodology provides us with
an statistical framework that explicitly addresses the dependence between
circumstances and advantages.

In this paper, we have focused on the distributions of earnings in Spain
in 2005, considering three exogenous circumstances: gender, country of birth
and parental education. Our results point out that the proportion of in-
equality of efforts varies between 33 to 38 percent. This proportion is rather
robust to the consideration of different variables to measure parental educa-
tion. Differences in parental education which account for half of the total
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Table 5: Decomposition of the inequality in inequality of efforts (IE) and
inequality of opportunity (IO) based on the Theil 0 index, according to three
different definitions of parental education. The models GB2(a, p0, q, b) and
GB2(a, p, q0, b). Year 2005.

Based on the GB2(a, p0, q, b) model
Father Education Mother Education Combined

Component Index value % Index value % Index value %
IE 0.0788 38.70 0.0772 33.05 0.0787 38.38

IO (1) 0.0701 34.43 0.0712 30.46 0.0701 34.16
IO (2) 0.0338 16.57 0.0591 25.28 0.0350 17.05
IO (3) 0.0210 10.30 0.0262 11.21 0.0214 10.41

Based on the GB2(a.p.q0.b) model
Father Education Mother Education Combined

Component Index value % Index value % Index value %
IE 0.0694 37.67 0.0706 37.01 0.0693 37.92

IO (1) 0.0769 41.71 0.0749 39.24 0.0767 41.93
IO (2) 0.0241 13.09 0.0312 16.37 0.0228 12.49
IO (3) 0.0139 7.53 0.0141 7.38 0.0140 7.67
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inequality of earnings. Finally, inequality of opportunity driven by the dis-
crete circumstances, gender and country of birth, represent a residual part
which varies between 7 and 10 percent depending on the model considered.
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Appendix

Parametric distributions

The Gamma and the Generalized Gamma distributions

A random variable X is said to have a gamma distribution if its PDF is given
by (α > 0),

fX(x) =
xα−1e−x

Γ(α)
, x > 0,

and fX(x) = 0 if x < 0. We will represent X ∼ G(α).
Now, the generalized gamma distribution (GG) is defined as Y = bX1/a,

where X ∼ G(p) and a, b, p > 0. The PDF of Y is,

fY (y) =
ayap−1e−(y/b)

a

bapΓ(p)
, y > 0, (16)

and fY (y) = 0 if y < 0. A GG distribution will be denoted by Y ∼ GG(a, p, b).
If Y ∼ GG(a, p, b) with a, p, b > 0 and p+ r/a > 0 then,

E(Y r) = br ·
Γ(p+ r

a
)

Γ(p)
.

The Generalized Beta of the Second Kind Distribution

The Generalized Beta of the Second Kind (GB2) distribution is defined in
terms of the PDF,

fX(x; a, p, q, σ) =
a(x/σ)ap−1

σB(p, q) [1 + (x/σ)a]p+q
, x > 0, (17)

where a, p, q, σ > 0, B(s, t) = Γ(s)Γ(t)/Γ(s+ t) and Γ(·) is the gamma func-
tion. The parameters a, p, q are shape parameters and σ is a scale parameter.
A random variable with pdf (17) will be represented by X ∼ GB2(a, p, q, σ).

The GB2 distributions contains important income distribution as special
or limiting case. The classical Singh-Maddala distribution is obtained when
p = 1 (Singh and Maddala, 1976), and will be represented by SM(a, q, σ);
the three-parameter Dagum distribution (Dagum, 1977) corresponds to the
choice q = 1 and will be represented by D(a, p, σ) and the second kind
beta distribution is obtained by setting a = 1, and will be represented by
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B2(p, q, σ). Fisk distribution is obtained for p = q = 1 and classical Pareto
II distribution (Arnold, 1983) for a = p = 1. The generalized gamma dis-
tribution (McDonald, 1984) appears as limiting case setting σ = q1/aσ̃, and
q →∞. In consequence, classical gamma and Weibull distributions are also
limiting cases of the GB2 distribution.

The shape parameters control the tail behavior of the model. In particu-
lar, the GB2 density is regularly varying at infinity with index −aq− 1, and
regularly varying at the origin with index −ap− 1. The rth moment of the
GB2 is,

E(Xr) = σr ·
B
(
p+ r

a
, q − r

a

)
B(p, q)

, (18)

and exists when −ap < r < aq.
The different multivariate extensions are based on the following repre-

sentations of the GB2 distribution. Let Yp ∼ Ga(p) and Yq ∼ Ga(q) be
independent gamma random variables with shape parameters p and q, and
let a > 0. The GB2 distribution can be represented as,

X = σ

(
Yp
Yq

)1/a

∼ GB2(a, p, q, σ). (19)

Previous stochastic representation permits to simulate samples of the GB2
distribution from independent gamma random variables.

Proof of Theorem 1

If we denote Y0 ∼ G(p0) and Yi ∼ G(qi), i = 1, 2, . . . , P , the joint CDF is
given by,

Pr{Xi ≤ xi; 1 ≤ i ≤ P} =

= Pr

{
σi

(
Y0
Yi

)1/ai

≤ xi; 1 ≤ i ≤ P

}

=

∫ ∞
0

Pr

{
σi

(
Y0
Yi

)1/ai

≤ xi; 1 ≤ i ≤ P |Y0 = y0

}
dFY0(y0)

=

∫ ∞
0

P∏
i=1

GYi

{
y0

(
xi
σi

)−ai}
dFY0(y0),
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where GYi(·) represents the survival function of the gamma distribution. Tak-
ing partial derivatives with respect zi we obtain the joint PDF,

∂P Pr{Xi ≤ xi; 1 ≤ i ≤ P}
∂x1 · · · ∂xP

= fX1,...,XP
(x1, . . . , xP ) =

=

∫ ∞
0

P∏
i=1

aiy0
σi

(
xi
σi

)−ai−1
fYi

{
y0

(
zi
σi

)−ai}
dFY0(y0).

Finally, substituting by the expressions of the PDF of the gamma random
variable and integrating we obtain (3).

Proof of Theorem 2

Using previous arguments to those used in the previous section and denoting
Yi ∼ G(pi), i = 1, 2, . . . , P and Y0 ∼ G(q0), the joint CDF is given by,

Pr{Xi ≤ xi; 1 ≤ i ≤ P} =

∫ ∞
0

P∏
i=1

FYi

{
y0

(
xi
ai

)ai}
dFY0(y0).

Taking partial derivatives with respect x1, . . . , xP we obtain the joint PDF,

fX1,...,XP
(x1, . . . , xP ) =

∫ ∞
0

P∏
i=1

aiy0
σi

(
xi
ai

)ai−1
fYi

{
y0

(
xi
ai

)ai}
dFY0(y0).

Substituting by the expressions of the PDF of the gamma random variables
and integrating we obtain (5).

Proof of Theorem 3

The proof of Theorem 3 is based in a double decomposition of the Theil-0
index. First, we have the usual decomposition of the Theil index in within
and between factors,

T0(X) =
P∑
i=1

πiT0(Xi)−
P∑
i=1

πi log
E(Xi)

E(X)
,

where E(X) =
∑P

i=1 πiE(Xi). Now, because of the Theil index does not
depends of change of scale we can assume σi = 1 for all i. We have,

Xi = Y 1/ai
p0
× Y −1/aiqi

, i = 1, 2, . . . , P
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where Yα ∼ G(α) and then Y
1/ai
p0 ∼ GG(ai, p0) and Y

−1/ai
qi ∼ IGG(ai, qi).

Now using Lemmas (1) and (2) and decomposing each term in other two
components, we completed the proof.
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